
CloudVoting: Analyzing Preferences using Spark and GraphX

Theresa Csar
TU Wien, Austria

csar@dbai.tuwien.ac.at

Abstract

Due to the availability of very big amounts of data, cloud
computing technologies have been highly developed and re-
searched. The use of cloud computing technologies was al-
ways associated with a high effort for programming and for
providing availability of infrastructure. In recent years this
has significantly changed and the aim of this paper is to make
cloud computing technologies available to work with large
sets of preference data. In this paper we present a tool to
read preferences in Spark (a cloud computing framework), to
transform this preference data to the weighted majority graph
or similar data representations, and to run basic analysis on
those. Spark can be run locally and therefore no cloud com-
puting infrastructure is needed to make use of this tool. The
described tool written in Scala is called CloudVoting and is
available open source on GitHub. We apply the tool of Cloud-
Voting to a real world dataset and make some observations
about performance.

1 Introduction
In the last decades the amount of data has been rapidly in-
creasing and technologies and methods have been developed
to cope with the growing amounts of data. The produced
data is diverse and comes in lots of different structures. On
the one hand there are big databases growing over time, for
example companies store all their information about sales,
costumers and products. On the other hand there are au-
tomatically generated datasets that come in very complex
shapes and are often hard to reason about. Such generated
datasets are created for example during the interaction of a
user with a web interface like some online shopping site. In
this paper we focus on preference data, created by a mecha-
nism that ranks entities in some way. The most basic exam-
ple is an election, where every voter ranks all (or a subset
of) candidates. In more complex cases the preference data is
automatically generated from user behaviour. For example
the choice of a user clicking a certain link, or buying a prod-
uct can be interpreted as a vote for one product over one or
many other. When using streaming services also the choice
of movies or songs can be interpreted as votes or even rank-
ings can be calculated (e.g. the most watched movies per

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

country and month). For instance look at a music stream-
ing service, where billions of users stream music every day.
For each day, each country, each genre etc. a preference list
(ranking) can be extracted from this data. Such preference
datasets can get very large very fast, which makes the anal-
ysis with classical winner determination methods on a local
computer very time consuming or even impossible.

Huge amounts of data occur in many application areas and
in the last decade the trend for managing these datasets goes
towards cloud based systems. One of the ongoing challenges
in this research area is to design efficient algorithms for
those systems. There are two main programming paradigms
for designing cloud based algorithms, those are MapRe-
duce (Dean and Ghemawat 2008) and Pregel (Malewicz
et al. 2010). MapReduce is a computation framework for
batch-processing of big data sets in distributed systems. In
the first step of a mapreduce procedure the data is splitted by
mapping datavalues to key-value pairs. The key-value pairs
are then distributed among the nodes grouped by their key
and in the last step the data is processed on each node and
saved to the file system. Hadoop is an open source imple-
mentation of MapReduce. Hadoop rapidly developed into
a large ecosystem of cloud management tools and is now
much more than ”just” MapReduce. The concept of ba-
sic MapReduce is very static and has great disadvantages
when it comes to dealing with incremental computations or
streaming data. In order to be more flexible when it comes
to complex distributed computations a new framework –
Spark (Zaharia et al. 2010) – has been developed. Spark
is an open source implementation combining the power of
MapReduce with methods to speed up the computation and
to make it more adaptive to the users need. Compared to
Hadoops MapReduce it gains a lot of speedup by loading
data into memory. For graph-based computations the con-
cept of Pregel (Malewicz et al. 2010) has been developed.
Pregel is a graph-based framework and the algorithms are
formulated in a vertex centric manner, where vertices act as
entities that send messages to their neighbours and process
the received messages. With GraphX (Xin et al. 2013) the
Pregel API is made available in Spark. GraphX comes to-
gether with a graph datastructure, many basic graph opera-
tors and algorithms.

When dealing with large preference datasets it can be a
huge advantage to use cloud computing technologies. There

has already been some work on MapReduce algorithms
for WinnerDetermination (Csar et al. 2017), but the use of
Pregel-like technologies and Spark has not yet been dis-
cussed. The goal of this paper is to bridge this gap with
proposing a tool to deal with preference data in Spark.
The tool is implemented in Scala and is called CloudVot-
ing. The source code is available on Github 1. CloudVoting
provides the tools for reading preference data from widely
used dataformats as are the formats used by PrefLib (Mattei
and Walsh 2013). CloudVoting includes methods for read-
ing and transforming preference data into weighted majority
graphs and similar graph datastructures. Basic winner deter-
mination rules are applied to the preference data using both
the MapReduce and Pregel paradigms that are supported by
Spark and GraphX.

Organisation and Main Results In this paper the basic
tools for reading preference data into Spark and GraphX are
explained and also the implementation and application of
some basic winner determination rules are shown. The pa-
per is structured as follows: Section 3 gives an introduction
to cloud computing technologies, in particular MapReduce
and Pregel and discusses some perfomance measures for
cloud computing algorithms. The cloud computing frame-
work Spark and the library GraphX are explained in Sec-
tion 4. In Section 6 the parsing of preference data into
GraphX, the used datastructure and supported data formats
are explained. In Section 7 some basic social choice rules
and their implementation in CloudVoting are documented.
All functions have been tested and evaluated on real world
data and the results can be found in Section 8. Also observa-
tions regarding performance and the underlying framework
are made. These observations may be of use of future devel-
opment of algorithms for dealing with preference data.

2 Related Work
Computational social choice is an active research topic as is
the application of voting rules to preference data and there
are already some tools available for handling preference
data. Democratix (Charwat and Pfandler 2015) is a logic
based implemenation of voting rules available as a python
tool making use of ASP methods. Pnyx (Brandt, Chabin, and
Geist 2015) is an online tool for aggregating and collecting
preferences. Spliddit (Goldman and Procaccia 2015) is an
online tool for fair division algorithms. None of these tools
deal with big datasets or distributed algorithms.
Preference datasets have been made available and datafor-
mats have been defined. In particular Preflib (Mattei and
Walsh 2013) provides lots of preference datasets in differ-
ent datatypes and conversion tools. CloudVoting supports
the preflib data format as input.

3 Cloud Computing Techniques
There are two main programming paradigms used for de-
signing algorithms for cloud systems. There is MapReduce
that is used for batch processing and Pregel that is designed

1https://github.com/theresacsar/
CloudVoting

to deal with huge graphs or networks. Both have been highly
researched in recent years. In this Section MapReduce and
Pregel are explained and we summarize important recent
work on performance considerations for algorithms using
those paradigms.

3.1 MapReduce
MapReduce has been introduced by Google in 2008 (Dean
and Ghemawat 2008). It is a computation paradigm to for-
mulate distributed algorithms. The first phase is the map
phase where the dataset is mapped to key-value pairs. Those
key-values pairs are distributed among the cluster nodes in
the shuffle phase and the computation happens in the last
phase - the reduce phase. The most prominent example for
MapReduce is word count. The input is a file containing
text and in the map phase each word is mapped to a key-
value pair with 1 as value (key=word, value=1). In the shuf-
fle phase all key-value pairs are grouped by key and sent to
the assigned node / reduce task. In the reduce phase all val-
ues are summed up for each word and as a result we get the
word counts.

It is possible to chain several MapReduce jobs, but this re-
quires the system to save the data after each job and read it in
the next phase again. MapReduce is not very well suited for
such iterative computations. There are already MapReduce
adaptations that can deal with such iterative computations.

Performance Considerations In the map-phase first of all
the input data size is of interest. If the values in the input
data set are mapped to several key-value pairs we can get
a high replication rate (Afrati et al. 2013). The replication
rate is the average number of key-value pairs produced by
one input value. The produced key-value pairs are then shuf-
fled among the executors. Therefore a high replication rate
also leads to high communication cost in the shuffle phase.
If several MapReduce computations are chained, the num-
ber of rounds is also an important performance measure.

3.2 Pregel
Pregel has been introduced by (Malewicz et al. 2010) as
a distributed graph processing framework. The main con-
cept of the framework is that algorithms are formulated in a
vertex-centric manner. The input graph consists of vertices
and directed edges, where each edge connects exactly two
vertices. In each round the vertices send messages to each
other along the edges and each vertex processes the received
data. If a vertex does not receive any messages in one round
it is marked as inactive, but can be reactivated later. The
whole computation stops as soon as all vertices are marked
as inactive.

Performance Considerations As with MapReduce also
for Pregel the communication cost and the space usage is
very important. A pregel algorithm is called balanced and
practical (BPPA) if it has linear space usage, linear com-
munication cost, linear computation cost and uses at most
a logarithmic number of rounds (Yan et al. 2014). For
many problems it is hard to find algorithms that meet these
performance guarantees. We propose a pregel algorithm for

computing the SchwartzSet in Section 7.4 that is based on a
BPPA for computing Strongly Connected Components.

4 Cloud Computing Frameworks
4.1 Spark
Spark is a cloud computing framework and widely applied
to many data-intensive tasks. It has first been introduced in
2010 by (Zaharia et al. 2010). The core concept of Spark
is the Resilient Distributed Dataset (RDD). RDDs are dis-
tributed and read-only collections of objects. The data can
be held in memory on the nodes in the cluster. With the ba-
sic method of MapReduce it was necessary to read and write
to the filesystem after each MapReduce step. The ability of
loading data into memory for reusing it in following steps
gains enormous speed to iterative computations and makes
interactive analysis possible. RDDs are distributed and repli-
cated across the nodes in the cluster, this does not only speed
up the computation but also provides a lot of data safety in
case one partition of an RDD is lost. The partitioning can be
configured, but also internal Spark processes optimize the
process.
RDDs are evaluated in a lazy fashion. This means that the
RDD is created only when the data is needed and not before.
This provides Spark with all the information it needs for fur-
ther optimization of the execution plan.
RDDs can be created by loading data from a file or by paral-
lelizing an already existing collection of objects. The second
approach is usually not applicable since this would require
you to have the whole dataset in memory on only one ma-
chine. The first approach also has the advantage that you can
use a file that is already stored in a distributed file system like
hdfs (hadoop distributed file system).
Two types of RDD-methods are distinguished: actions and
transformations. By transformations a new RDD is created,
but due to the lazy-evaluation it is not yet computed, but a
computation plan is created. The computation happens only
when an action is called. This makes sure that there are no
unnecessary objects in memory and no unnecessary compu-
tations are performed.

When starting a spark program a SparkContext has to
be created. The SparkContext saves all information about
the available resources and the workspace. In our code the
SparkContext is saved in a variable called sc.

val conf = new SparkConf()
conf.setMaster("local")
conf.setAppName("CloudVoting")

val sc = new SparkContext(conf)

RDDs and MapReduce In Spark the advantage of lazy
evaluation comes into play when performing MapReduce
computations. The map phase corresponds to a transforma-
tion of an RDD whereas the reduce phase corresponds to an
action. Since Spark won’t start the computation before the
action is called it already has a lot of information about the
ongoing computation and can construct an efficient compu-
tation plan and optimize the partitioning. The basic MapRe-
duce example wordcount is programmed in Spark using the

programming language Scala as follows:

val file = sc.textFile(inputpath)
val words = textFile.flatMap(

line => line.split())
val counts = words.map(word => (word, 1))

.reduceByKey((v1,v2) => v1 + v2)
counts.saveAsTextFile(outputpath)

Each line of the file is read and split into words. The
words are then mapped to key-value pairs of the structure
(key=word, value=1) and in the reduce phase the key-value
pairs are grouped by the keys (the words) and the sum of
the values is computed. The file at the inputpath is not read
before the action .reduceByKey is called.

4.2 GraphX
GraphX (Xin et al. 2013) is an extension to Spark, with
the main contribution of the distributed Graph Datatype,
which is an extention to the RDDs. GraphX also provides
some basic graph operators and algorithms. The Graph
Datatype is based upon RDDs and is therefore distributed
in the same fashion. GraphX provides methods to optimize
the partitioning of the Graph on the cluster in order to avoid
huge communication costs and to speed up the computation
time.

For a Graph Graph[VD, ED] the vertex datatype
VD and the datatype of edge attributes ED are given.
Graphs can be created from any set of VertexRDDs
and EdgeRDDs. VertexRDD is a special type of RDD
with the structure RDD(VertexID, VD) and the ad-
ditional constraint that each VertexID can occur only
once. An EdgeRDD can be created from any RDD of
the structure RDD(src=VertexID, dst=VertexID,
attr=ED).

Pregel API The general mechanism of Pregel is explained
in Section 3.2. The Pregel API of GraphX looks the follow-
ing way:

def pregel (
initialMsg: A,
maxIter: Int,
activeDir: EdgeDirection) (

vprog: (VertexId, VD, A) => VD,
sendMsg: EdgeTriplet[VD, ED] =>

Iterator[(VertexId, A)],
mergeMsg: (A, A) => A) : Graph[VD, ED]

The parameters of the function are the initial Message
intialMsg of type A (sent to all vertices in the first step),
the maximum number of iterations maxIter and the active
direction of the edges. If maxIter is not set the computa-
tion stops when all vertices are inactive - i.e. no vertex re-
ceived a message in the preceding step. The user has to pro-
vide a vertex program vprog(VertexID, VD, A)=>
VD, which is a function every active vertex executes after all
messages have been sent. The messages are of type A and
the VertexDatatype is VD. The sendMsg function returns an

Iterator over the destination IDs and the corresponding mes-
sages. The sendMsg function is applied to all EdgeTriplets.
EdgeTriplets contain the attribute of an edge including the
vertex attributes of both connected vertices. All messages
with the same destination vertex can be combined using the
function mergeMsg. This allows for some precomputation
before the actual vertex program vprog starts. The result
is a graph Graph[VD,ED] with the same vertex and edge
datatypes as the input graph (org.apache.spark 2017). 2

5 Input: Preference Data
In this paper we consider elections with m candidates and n
votes. Each vote is a strict linear partial order of candidates,
that indicate the preferences of the respective voter or some
other kind of ranking. Already prepared preference data can
be found on the online platform PrefLib (Mattei and Walsh
2013) in several different data formats. Preferences can be
generated from many other different types of input data. In
our real world data example in Section 8 we use rankings
created by the music-streaming service spotify 3. The data is
provided as .csv but we transform it to the Preflib dataformat
.soi.

5.1 Preflib
Preflib is providing a wide range of preference data (Mattei
and Walsh 2013) and CloudVoting allows you to use many
of the provided dataformats as input. The election datasets
are provided in different formats in PrefLib. The following
formats are supported by CloudVoting:
• Strict Orders - Complete Lists (soc): The file contains sev-

eral votes, where each vote is a list of strictly ordered pref-
erences.

• Strict Orders - Incomplete lists (soi): allows a voter to
leave some candidates unranked

• Majority Graph (mjg): a directed graph indicating which
candidates are preferred over each other by the majority
of votes.

• Weighted Majority Graph (wmg): a directed graph indi-
cating which candidates are preferred over each other by
the majority of votes, weighted by the difference between
the number of votes that support the edge and the votes
that support the edge in the other direction.

• Pairwise Graph (pwg): a directed graph, where each edge
is weighted by the number of voters supporting it.

6 Data Structure: Preferences in
CloudVoting

In CloudVoting the elections are represented as differ-
ent types of weighted graphs. The edge datatype is
Long and contains the number of votes supporting
this edge, or a similar measure. The vertex datatype is

2https://spark.apache.org/docs/latest/api/
scala/index.html#org.apache.spark.graphx.
Pregel

3https://www.kaggle.com/edumucelli/
spotifys-worldwide-daily-song-ranking/data

String and contains the name of the candidate. The
PairwiseWeightedGraph contains all votes in both di-
rections. The Strict- and WeakDominanceGraph only
contain an edge between vertices a and b if a dominates
b, i.e. if more votes prefer a over b than the other way
around. In the Strict- and WeakDominanceGraph the
weight at the edge a → b is the the number of votes pre-
ferring a over b minus the number of votes preferring b
over a. The WeakDominanceGraph also contains edges
with weight 0, whereas in the StrictDominanceGraph
these edges are deleted. All those voting graphs have the
datatype Graph[String,Long].

If we want to calculate scores, we save the scores
directly at the vertex. For this case we use a differ-
ent VertexDatatype (String,Long) and therefore a
different GraphDatatype Graph[(String,Long),
Long]. The available scored Graph Datatypes
are: ScoredPairwiseWeightedGraph,
ScoredWeakDominanceGraph and
ScoredStrictDominanceGraph. The weights
at the edges are calculated the same way as with the
corresponding unscored Graph Datatypes.

Conversion functions between all Graph-
datatypes are provided. For example the con-
version from PairwiseWeightedGraph to
WeakDominanceGraph can be very easily performed
thanks to the API of GraphX.

def toWeak(pwg: PairwiseWeightedGraph) :
WeakDominanceGraph

First the reverse graph is created and than the edges at-
tributes are transformed such that the weight is the original
weight multiplied by (-1). From the resulting reverse graph
with negative weights we only select the edges.

var revedges = pwg.reverse
.mapEdges(edge => (-1) * edge.attr)
.edges

In the next step the attributes of edges connecting the
same vertices are summed up and only the edges with pos-
itive value are kept. This is done by first creating a graph
that contains both the original and the reverse edges (graph).
Then the edges are grouped and new weights are calculated.
The resulting edges are filtered and only the edges with pos-
itive weights are kept.

val graph = Graph(pwg.vertices,
pwg.edges.union(revedges))

val edges = graph
.groupEdges((i, j) => i + j)
.edges.filter(e => e.attr >= 0))

Graph(pwg.vertices, edges)

7 Winner Determination
In this paper we consider elections of the following kind:
There are m candidates and n votes. Each vote is a strict lin-
ear partial ordering of candidates.
In social choice we often use scoring rules. Some of those
scoring rules are calculated directly from the votes by as-
signing each candidate a score relative to the position in
the vote. The scores resulting from all votes are summed
up to get the final score and the candidates with the highest
scores are selected as winners (e.g. Borda-Score, Plurality,
. . .). There are also scoring rules based on the dominance
graph or weighted majority graph of the election. A directed
edge between candidates a and b in the dominance graph in-
dicates that a dominates b. We say that a dominates b if there
are more votes ranking a before b. In the weighted majority
graph this edge has the number of votes preferring a over
b minus the number of votes preferring b over a as weight.
The Copeland Score is based on the Dominance Graph. The
score of a is the number of candidates dominated by a minus
the number of candidates that dominate a. (i.e. the difference
of outgoing and incoming edges). Again the candidates with
the highest scores are selected.

There are other methods for winner selection, that are
not based on scoring (e.g. Smithset, Schwartzset, Simpson,
Schulze, . . .). We will briefly discuss the SchwartzSet, but
leave further voting rules and more detailed discussion for
future work. The selection of discussed voting rules in this
paper comes hand in hand with the general work flow when
analyzing preference data. The scoring rules based on the
preference data can easily be computed while actually read-
ing the data into the framework and creating the graph rep-
resentation of the election. Calculating the graph represen-
tation is already a computationally expensive problem and
makes full use of the spark infrastructure. We focus on some
basic social choice rules, the design of algorithms for more
complex problems is future work.

7.1 Borda Score
Borda scores assign a value to each candidate based on
their position in the ranking (Brandt, Brill, and Harrenstein
2016). In the CloudVoting implementation Borda scores are
calculated while reading from a file containing preference
lists. Each vote is a list of preferences and each candidate
receives points relative to its position in the ranking. In
CloudVoting the following version of Borda Scores is im-
plemented: For a preference list of length m the candidate
ranked first receives m − 1 points, the candidate ranked
second receives m − 2 points and so on. All points are
then added up for all voters and the candidate with the
highest score is selected as the winner (Brandt, Brill, and
Harrenstein 2016).

7.2 Other Scoring Rules
When reading the preferences from a file the following
scores can be computed in CloudVoting. The weights are as-
signed to each candidate in the preference lists at the corre-
sponding position in the ranking. The final score is the sum

over all weights. The weights for some other scoring rules
are shown in table 1.

Rule Weights
Plurality (1, 0, 0,..., 0)
Anti-plurality (1, 1, 1,..., 1, 0)
k-Approval (1, 1, 1,..., 1, 0, 0,..., 0)
Borda (m− 1, m− 2, ..., 0)

Table 1: Weights of Scoring Rules (Brandt, Brill, and Har-
renstein 2016)

7.3 Copeland Scores
Copeland scores are computed based on the dominance
graph and depend on the number of candidates a candidate is
defeating and is defeated by. The Copeland Score is defined
as: CopelandS(a) = |{b|a � b}| − |{b|b � a}| (Brandt,
Brill, and Harrenstein 2016). In other words: the Copeland-
Score is the difference of the number of outgoing and in-
coming edges in the dominance graph.

def CopelandScores(graph: Graph[String,
Long], sc: SparkContext): ScoredGraph
= {

val out = graph.outDegrees
val in = graph.inDegrees
val scores: RDD[(VertexId, Long)] =

out.join(in).map(degrees =>
(degrees._1,
degrees._2._1-degrees._2._2))

var resultgraph: Graph[(String, Long),
VertexId] =
graph.outerJoinVertices(scores) {

case (id, name, Some(score)) => (name,
score)

case (id, name, None) => (name, 0)
}

resultgraph
}

The outdegree and indegree of each vertex can easily
be computed using the provided methods of GraphX. The
scores are computed from degrees by joining indegrees and
outdegrees and calculating the difference. Then the scores
have to be joined with the old vertices in the graph to create
the new scored graph.

7.4 Schwartz Set
The Schwartz set is defined as the union of all mini-
mal undominated sets of vertices in the strict dominance
graph (Brandt, Fischer, and Harrenstein 2009). When all
Strongly Connected Components are known the Schwartz
Set is easily found by forming the union of all undominated
SCCs. In (Yan et al. 2014) an algorithm for computing the
SCCs in pregel – the min-label algorithm – is presented. The
CloudVoting algorithm for the Schwartz Set is an adaptation
of the min-label algorithm. Since the min-label algorithm is
a balanced practical pregel algorithm (BPPA), it follows that

the SchwartzSet algorithm is BPPA too, i.e. it takes only a
logarithmic number of rounds and space usage, communica-
tion cost and computation cost are linear.

As input the strict dominance graph DG is given. Each
vertex has as vertex id vid and (minf ,minb) as value, where
minf is the forward min-label and minb the backward min-
label.

• Initialize each vertex with (minf = vid,minb = vid).

• Min-Label foward propagation (pregel procedure):

– SendMsg: Each vertex sends the minf value in forward
direction to the adjacent vertices

– vertexProg: minf is set to the minimum value of all
received values and the old minf

• Min-Label backward propagation (Pregel procedure): like
the forward propagation but with the reverse edge direc-
tion

• Postprocessing:

– remove all edges between vertices with different
(minf ,minb) labels

– mark all vertices with minf < minb as not in
Schwartz Set

– save for every vertex with minf == minb, that its
SCC is found and named minf .

– if minf > minb, the vertex is still a candidate for
the SchwartzSet, but we mark all other vertices having
minb as forward label as not in SchwartzSet

• The program stops as soon as the number of edges stays
unchanged, i.e. no new SCCs have been found.

8 Experimental Evaluation
For proof of concept and preliminary experimental evalua-
tion we use the Spotify world wide ranking dataset 4. The
dataset contains the top 200 rankings for every country of
the world for each day over six months (January to June
2017). The original input data file has 230.7 MB but after
conversion to the preflib .soi dataformat the resulting file
has 8.5 MB. It contains 12 460 songs (i.e. candidates) and
∼2 Mio. rankings. Each ranking has length of at most 200.
The resulting pairwise weighted graph has 12 460 vertices
and ∼3.6 Mio edges. Saving this graph to disc takes 66.2
MB for the edges and 450 KB for the vertices.

In this Section we show the computation of the discussed
voting rules on the spotify ranking data and make observa-
tions regarding the performance of the execution in Spark.
The aim is not only to show how CloudVoting can be ap-
plied but point out what properties of Spark are of interest
for efficient design of algorithms. The observations of this
Section are meant to be used for future research concerning
the processing of preference data in cloud based systems.

4https://www.kaggle.com/edumucelli/
spotifys-worldwide-daily-song-ranking/data

8.1 Borda Score
The borda scores can be computed in CloudVoting by writ-
ing the following lines of code:

val bordascores = BordaFromSoc(file, sc)
val winner = Winner(bordascores)

The concept of lazy evaluation causes Spark to start with
the computation when the result is needed. This is the case
in the second line of code, when we actually determine the
winner over the scored vertices.

Spark does a lot of optimization in the background. In Fig-
ure 1 the computation graph created by Spark for computing
the borda scores is shown.

Figure 1: DAG - Execution Graph for Borda Scores

Spark splits the computation into different Stages at those
points where shuffling is necessary. After each stage some
of the data is saved to disc to be used later by a different
stage. The amount of data saved during this Shuffle phase
can be seen in Table 2 in the column Write. Respectively
Read shows the size of the data that is read from preceding
stages. This relationship between stages is also called Shuf-
fleDependency (Karau and Warren 2017). Each stage can be
executed without communication with other executors. It is
usually advisable to design algorithms that don’t take many
stages.

Stages 2 and 3 both read the whole input file spotify.soi to
transform (map) the read RDD. That the whole file is read
can be observed in the column Input of Table 2.The output
of Stage 3 is used as input to Stage 4. You can observe this
in the DAG visualisation in Figure 1 and when looking at

ID Descr. Input Read Write
5 reduce 410.2 KB
4 map 83.6 KB 99.7 KB
3 flatMap 8.5 MB 83.6 KB
2 map 8.5 MB 310.5 KB

Table 2: Stages of the Borda Score Computation

the size of Shuffle Read and Shuffle Write of the respective
Stages in Table 2.

The borda winner of this dataset has a Borda score of 1
916 432 and is the song ”Shape of You” by ”Ed Sheeran”.

The plurality score is computed in a very similar way as
the borda score and the result is the same. The plurality score
of our winner song is 3 396.

8.2 Copeland Score
To compute the copeland score, first the dominance graph
has to be created from the preferences. The pairwise
weighted graph is created while reading from the .soc file
and then it is transformed to the weak dominance graph.

val pwg = readSoc("spotify.soi", sc)
val weakgraph = toWeak(pwg)
val copelandscores

=CopelandScores(weakgraph, sc)
val winner = Winner(copelandscores)

The stages and the used data sizes are shown in Table 3.
The input size of the file spotify.soi that contains all pref-
erences is 8.5 MB, as you can see in the input column for
Stages 3 and 5. Unfortunately the size does not stay at this
level, since we have to compute all edges and their weights
from the list of preferences. This large set of edges is created
in Stage 6 and used as input to stage 7. In Table 3 it can be
seen that this EdgeRDD is 161.2 MB large. This is huge in
comparison to the original input data of size 8.5 MB. After
stripping it of all edges that were produced several times by
different votes, the remaining size of the EdgeRDD is 60.8
MB in memory.

ID Descr. Input Read Write
10 reduce 1455 KB 67.3 KB
9 map 1455 KB 527.9 KB 67.3 KB
8 mapPart 60.8 MB 65.2 KB
7 mapPart 161 MB 50.1 KB
6 mapPart 81.1 MB 64.7 MB 64.9 KB
5 map 8.5 MB 297.7 KB
4 mapPart 64.7 MB 50.0 KB
3 flatMap 8.5 MB 64.7 MB
2 first 64.0 KB
1 first 64.0 KB
0 first 64.0 KB

Table 3: Stages of the Copeland Score Computation

The Copeland Winner of this dataset is again ”Shape of
You” by ”Ed Sheeran” with a Copeland Score of 11 876.

9 Conclusion
We reviewed existing cloud computing techniques and
showed how they can be used to deal with large preference
data. We introduced a tool called CloudVoting that can be
used to work with preference datasets in a cloud comput-
ing environment. Some basic functionalities for dealing with
preference data have been implemented and applied success-
fully. In Section 8 we applied basic winner determination
rules to a real world dataset and made close observations of
the behaviour of the system. We observed that a huge prob-
lem are potentially large intermediate results when comput-
ing e.g. the pairwise weighted graph from a set of prefer-
ences. We made observations about how the used memory
increases during the computation and where the computation
is split into stages. In the experimental section we gained in-
sights to the underlying mechanisms of the system and can
use this knowledge in future work to design distributed al-
gorithms and implement more efficient methods for dealing
with preference data.

We described how measures for efficient cloud computing
algorithms are found and we gave some hints on where to
tune the performance. The algorithm used to compute the
Schwartzset has been designed to fit theoretical performance
measures. In particular the SchwartzSet algorithm is BPPA
(a balanced practical pregel algorithm), i.e. the number of
rounds is logarithms and space usage, communication cost
and computation cost are linear. It remains to apply such
theoretical analysis to future social choice algorithms.

Future work includes designing high-performance algo-
rithms for a larger variety of voting rules. Especially vot-
ing rules that are based on graphs are of great interest. Effi-
cient distributed pregel algorithms for computing the smith
set, schwartz set, schulze rule and other methods are yet to
be found and investigated for their performance. Not only
the design of distributed social choice algorithms is a future
topic but also the enclosing of new datasets and application
areas.

Acknowledgements This work was supported by
the Vienna Science and Technology Fund (WWTF)
through project ICT12-015, by the Austrian Science Fund
projects (FWF):P25207-N23, (FWF):P25518-N23 and
(FWF):Y698.

References
Afrati, F. N.; Sarma, A. D.; Salihoglu, S.; and Ullman, J. D.
2013. Upper and lower bounds on the cost of a map-
reduce computation. Proceedings of the VLDB Endowment
6(4):277–288.
Brandt, F.; Brill, M.; and Harrenstein, P. 2016. Tournament
solutions. In Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.;
and Procaccia, A., eds., Handbook of Computational Social
Choice. Cambridge University Press.
Brandt, F.; Chabin, G.; and Geist, C. 2015. Pnyx:: A pow-
erful and user-friendly tool for preference aggregation. In
Proceedings of the 2015 International Conference on Au-
tonomous Agents and Multiagent Systems, 1915–1916. In-

ternational Foundation for Autonomous Agents and Multia-
gent Systems.
Brandt, F.; Fischer, F.; and Harrenstein, P. 2009. The com-
putational complexity of choice sets. Mathematical Logic
Quarterly 55(4):444–459.
Charwat, G., and Pfandler, A. 2015. Democratix: A
declarative approach to winner determination. In Inter-
national Conference on Algorithmic DecisionTheory, 253–
269. Springer.
Csar, T.; Lackner, M.; Pichler, R.; and Sallinger, E. 2017.
Winner determination in huge elections with mapreduce. In
Proceedings of AAAI-17. AAAI Press.
Dean, J., and Ghemawat, S. 2008. Mapreduce: simplified
data processing on large clusters. Communications of the
ACM 51(1):107–113.
Goldman, J., and Procaccia, A. D. 2015. Spliddit: Un-
leashing fair division algorithms. ACM SIGecom Exchanges
13(2):41–46.
Karau, H., and Warren, R. 2017. HIgh Performance Spark.
” O’Reilly Media, Inc.”.
Malewicz, G.; Austern, M. H.; Bik, A. J.; Dehnert, J. C.;
Horn, I.; Leiser, N.; and Czajkowski, G. 2010. Pregel: a
system for large-scale graph processing. In Proceedings of
the 2010 ACM SIGMOD International Conference on Man-
agement of data, 135–146. ACM.
Mattei, N., and Walsh, T. 2013. Preflib: A library for prefer-
ences http://www. preflib. org. In International Conference
on Algorithmic DecisionTheory, 259–270. Springer.
org.apache.spark. 2017. Scala spark api docu-
mentation. https://spark.apache.org/docs/
latest/api/scala/index.html.
Xin, R. S.; Gonzalez, J. E.; Franklin, M. J.; and Stoica, I.
2013. Graphx: A resilient distributed graph system on spark.
In First International Workshop on Graph Data Manage-
ment Experiences and Systems, 2. ACM.
Yan, D.; Cheng, J.; Xing, K.; Lu, Y.; Ng, W.; and Bu, Y.
2014. Pregel algorithms for graph connectivity problems
with performance guarantees. Proceedings of the VLDB En-
dowment 7(14):1821–1832.
Zaharia, M.; Chowdhury, M.; Franklin, M. J.; Shenker, S.;
and Stoica, I. 2010. Spark: Cluster computing with working
sets. HotCloud 10(10-10):95.

