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Abstract

Online advertising has motivated companies to collect vast
amounts of information about users, which increasingly cre-
ates privacy concerns. One way to answer these concerns is
by enabling end users to choose which aspects of their private
information can be collected. Based on principles suggested
by Feldman and Gonen (2016), we introduce a new online
advertising market model which uses information brokers to
give users such control. Unlike (Feldman and Gonen 2016),
our model is dynamic and involves multi-sided markets where
all participating sides are strategic. We describe a mechanism
for this model which is theoretically guaranteed to (approxi-
mately) maximize the gain from trade, avoid a budget deficit
and incentivize truthfulness and voluntary participation. As
far as we know, this is the first known dynamic mechanism
for a multi-sided market having these properties.
We experimentally examine and compare our theoretical re-
sults using real world advertising bid data. The experiments
suggest that our mechanism performs well in practice even in
input regimes for which our theoretical guarantee is weak or
not relevant.

1 Introduction
Online advertising currently supports some of the most im-
portant Internet services, including: search, social media
and user generated content sites. For online advertising to
be effective, companies collect vast amounts of informa-
tion about users, which increasingly creates privacy con-
cerns (Conitzer, Taylor, and Wagman 2012). As these con-
cerns are especially pronounced in the European society, EU
regulators have actively been looking for ways to improve
users’ privacy. One way suggested by the EU regulators to-
ward this goal is development of tools that enable end users
to choose which parts of their private information online ad-
vertising platforms are allowed to collect.

Based on this motivation, and extending principles sug-
gested by Feldman and Gonen (2016), we introduce a new
model capturing a foreseeable future form of online adver-
tising. The market in this model includes advertisers as buy-
ers, users as sellers (each willing to sell her own informa-
tion portfolio through a broker) and information brokers as
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mediators representing the users. The objective of a mecha-
nism for this setting is to end up with a match between users
and advertisers maximizing the gain from trade. Towards
that goal, the mechanism has to collect information from the
mediators and advertisers; and thus, needs to incentivize the
mediators and advertisers to report truthfully, which it can do
by charging the advertisers and paying the mediators. Addi-
tionally, unlike in (Feldman and Gonen 2016), we assume
here that the users are strategic as well, which requires the
mechanism to incentivize them also by recommending for
each mediator to forward some of the payment he received
to his users.

As the online advertising ecosystem is dynamic, the mar-
ket in our model is dynamic as well. We assume the me-
diators and advertisers arrive at a uniformly random order,
and refer to the arriving advertisers and mediators as arriv-
ing entities. Every time that a new entity arrives, the mecha-
nism has an opportunity to assign users to advertisers. More
specifically, users enroll with a mediator offline, i.e., when
the mediator arrives at the market it has a list of users that
are his customers and the mechanism is allowed to assign
users of the newly arriving mediator to advertisers that have
already arrived. Similarly, when an advertiser arrives the
mechanism is allowed to assign users of mediators that have
already arrived to the newly arriving advertiser. The result
of an assignment is that when a user of a mediator?s deal
views interstitial advertising it will be from the assigned ad-
vertiser. Notice that this means that the mechanism is not al-
lowed to cancel assignments that have already been made, or
assign a user of a mediator that has already arrived to an ad-
vertiser that has already arrived. These restrictions, together
with the random arrival order, represent the dynamicity of
the setting. We note that our choice to model a dynamic
market using a random arrival order is a well established
practice—for a few examples, see (Babaioff et al. 2009;
Vaze and Coupechoux 2016). Intuitively, this modeling
choice reflects the assumption that real arrival orders are ar-
bitrary rather than adversarial.

A natural expectation from a dynamic exchange mecha-
nism is to (approximately) maximize the gain from trade,
while maintaining desirable economic properties such as in-
centivizing truthfulness, voluntary participation and avoid-
ing budget deficit. Unfortunately, as far as we know, no
previous work has managed to achieve these goals simul-



taneously. Wurman, Walsh, and Wellman (1998) presented
a mechanism incentivizing truthful reporting from either the
buyers or the sellers, but not simultaneously from both. A
different mechanism given by Blum, Sandholm, and Zinke-
vich (2002) maximizes the social welfare of buyers and
non-selling sellers (as opposed to maximizing the gain from
trade). Finally, Bredin, Parkes, and Duong (2007) present
a truthful dynamic double-sided auction that is constructed
from a truthful offline double-sided auction rule, however its
competitiveness with respect to the optimal trade was only
studied empirically.

The failure of the above works to maximize the gain from
trade while maintaining truthfulness, individual rationality
(voluntary participation) and budget balance (avoiding bud-
get deficit) can be partially attributed to an impossibility re-
sult of (Myerson and Satterthwaite 1983). This impossibil-
ity result states that, even in an offline setting involving a
single buyer and a single seller, maximizing the gain from
trade while maintaining truthfulness and individual rational-
ity perforce runs a deficit (i.e., is not budget balanced). An
additional reason for the above failure is that the matching
problem faced by the market maker (exchange mechanism)
in multi-sided dynamic markets combines elements of dy-
namic algorithms and sequential decision making with con-
siderations from mechanism design. More specifically, un-
like in a traditional dynamic algorithm, a mechanism for
such a setting must provide incentives for agents to report
truthful information to the mechanism. On the other hand,
unlike in traditional mechanism design, this is a dynamic
setting with agents that arrive over time, and the mechanism
must deal with uncertainty and make irrevocable decisions
before the arrival of all the agents.

1.1 Our Result

In this work we present the first (to the best of our knowl-
edge) dynamic mechanism for a multi-sided market setting
which theoretically guarantees the economic properties of
truthfulness, individual rationality, and budget balance while
(approximately) maximizing the gain from trade. As our set-
ting involves multi-dimensional agents, our result shows that
dynamic multi-sided markets can be handled even in the
presence of multi-dimensional agents. Moreover, we study
the practical performance of our mechanism using simu-
lations based on real-world advertisers’ bids. The data for
these experiments was gathered from Facebook advertising
campaigns. These experiments suggest that our mechanism
performs well in practice even in input regimes for which
our theoretical guarantee is weak.

The dynamic nature of our setting raises the question of
what it means for a mechanism to be individually rational.
As usual, individual rationality should imply that an agent
never losses by participating. However, in a dynamic set-
ting it is natural to require also that an agent never losses
by not leaving prematurely. We introduce a new concept
called “continuous individual rationality” which captures
the above intuitive requirement. Formally, a mechanism is
continuously individually rational for an agent (a user, a
mediator or an advertiser) if the agent’s utility can only in-

crease over time when the agent is truthful1. Note that this
newly presented concept of continuous individual rationality
is a stronger concept than individual rationality in its classic
form as it implies ex post individual rationality.

Satisfying the requirements of continuous individual ra-
tionality, together with the other economic properties our
mechanism guarantees, requires our mechanism to use a
novel pricing scheme where users may be paid ongoing
increments during the mechanism’s execution. The maxi-
mum total payment that a user may end up with is pre-
known (when the user arrives), however, the actual incre-
ments are not pre-known and depend on the market’s dy-
namically changing demands and supplies. As users rarely
ever get paid in reality, this pricing scheme is new to mech-
anism design and might look odd at first glance. Never-
theless, the principle it is based on can be observed in
many common real life scenarios such as executive com-
pensation payments and company acquisition deals. For ex-
ample, the eBay acquisition of Skype in 2005 involved
both an upfront payment and an additional payment whose
amount depended on the future performance of the bought
company (see https://investors.ebayinc.com/
releasedetail.cfm?releaseid=176402).

Like in (Babaioff, Feldman, and Tennenholtz 2016), we
say that a mechanism is user-side incentive compatible if
truthfulness is a dominant strategy2 for each user given that
her mediator is truthful. Similarly, the mechanism is user-
side continuously individually rational if it is continuously
individually rational for each user given that her mediator is
truthful. A mechanism is mediator-side incentive compati-
ble if truthfulness is a dominant strategy for each mediator
whose users are all truthful, and it is mediator-side contin-
uously individually rational if it is continuously individu-
ally rational for every such mediator. Finally, a mechanism is
advertiser-side incentive compatible if truthfulness is a dom-
inant strategy for every advertiser, and it is advertiser-side
continuously individually rational if it is continuously indi-
vidually rational for every advertiser. We construct a mecha-
nism which is three-sided incentive compatible (i.e., it is si-
multaneously user-side incentive compatible, mediator-side
incentive compatible and advertiser-side incentive compati-
ble) and also three-sided continuously individually rational
(i.e., it is simultaneously user-side continuously individu-
ally rational, mediator-side continuously individually ratio-
nal and advertiser-side continuously individually rational).

Our mechanism is termed “Observe and Price Mecha-
nism” (OPM). The following theorem analyzes the economic
properties guaranteed by OPM and its competitive ratio. The
parameter α is an upper bound, known to the mechanism,
on the market importance of any single agent. Formally, α
bounds the ratio between the size of the optimal trade and the
maximum capacity of an advertiser or the maximum number
of users that a mediator can represent.

1Informally, an agent is truthful if he/she reports the informa-
tion as it is known to him/her. A formal definition of what it means
for a user, mediator or advertiser to be truthful is given in Section 2.

2Here and throughout the paper, a reference to domination of
strategies should be understood as a reference to weak domination.



Theorem 1.1. OPM is budget balanced3, three-sided contin-
uously individually rational, three-sided incentive compati-
ble and (1− 9.5 6

√
α− 10e−2/

3
√
α)-competitive.

From a theoretical perspective, the most important fea-
ture of this ratio is that it approaches 1 when no agent has
too much market power. Though this is a desirable aspect
of the algorithm, we are aware that the competitive ratio
has an unintuitive form and is often non-positive for mar-
kets of a moderate size. The later can be significantly alle-
viated by making the proof tighter (and less readable). In-
stead we chose to address intuitiveness and readability by
including experimental results in the paper. The experimen-
tal results demonstrate that our mechanism performs well
on inputs derived by real world data even for moderate size
markets despite what current theoretical analysis shows. We
note that for large markets, such as the market we study in
this work, α is expected to be much smaller than 1. Never-
theless, our simulation results suggest that in practice OPM
performs well even for markets having a more moderate size
and a larger value of α. We also note that the three-sided
incentive compatibility of our mechanism implies that it is
universally truthful, i.e., truthful for all possible random coin
flips.

1.2 Additional Related Work
From a motivational point of view our model is closely
related to models involving mediators and online advertis-
ing markets, such as the models studied by (Ashlagi, Mon-
derer, and Tennenholtz 2009; Stavrogiannis, Gerding, and
Polukarov 2014). However, despite their network exchange
motivation, these models are actually auctions (i.e., one-
sided mechanisms). Moreover, they focus on offline rev-
enue maximization mechanisms, which is very different
from our focus. Other works with a different motivation,
such as (McAfee 1992; Gonen, Gonen, and Pavlov 2007;
Segal-Halevi, Hassidim, and Aumann 2016), have studied
mechanisms for two-sided non-dynamic settings. However,
with the exception of the very recent last reference, they all
considered single-dimensional agents. We are not aware of
any previous mechanism for a two-sided dynamic setting.

There is also a significant body of works studying dyan-
mic matching problems with an adversarial arrival order.
This body of work was originated by the work of Karp,
Vazirani, and Vazirani (1990) who described an optimal dy-
namic algorithm for unweighted bipartite online matching.
Later works considered more general settings allowing var-
ious kinds of weights—see, for example, (Charikar, Hen-
zinger, and Nguyen 2014). We note that none of these works
refers to strategic considerations.

2 Model and Definitions
Let us now present the exact details of the model we con-
sider. The model consists of a set P of users, a set M of
mediators and a set A of advertisers. Each user p ∈ P has a
non-negative cost c(p) which she suffers if she is assigned to

3A mechanism is budget balanced if the amount it charges
(from the advertisers) is at least as large as the amount it pays.

an advertiser; thus, the utility of p is 0 if she is not assigned
and t− c(p) if she is assigned and paid t. The users are par-
titioned among the mediators, and we denote by P (m) ⊆ P
the set of users associated with mediator m ∈ M (i.e., the
sets {P (m) | m ∈ M} form a disjoint partition of P ). The
utility of a mediator m ∈ M is the amount he is paid minus
the total cost his users suffer; hence, if x(p) ∈ {0, 1} is an
indicator for the event that user p ∈ P (m) is assigned and
t is the payment received by m (part of which might have
been forwarded by the mediator to his users), then the utility
of m is t −

∑
p∈P (m) x(p) · c(p)4. Finally, each advertiser

a ∈ A has a positive capacity u(a), and she gains a non-
negative value v(a) from every one of the first u(a) users
assigned to her; thus, if advertiser a is assigned n ≤ u(a)
users and has to pay t then her utility is n · v(a)− t.

As explained in Section 1, we assume the entities (i.e.,
the mediators and advertisers) arrive at a uniformly random
order. A mechanism for this model knows the total num-
ber of entities5, and views the entities as they arrive; how-
ever, it has no prior knowledge about the parameters of the
entities or about the users. To compensate for this lack of
knowledge, each arriving entity reports information to the
mechanism. Each advertiser reports her capacity and value.
The reports of the mediators are formed in a slightly more
involved way. Each user reports her cost to her mediator,
and based on these reports each mediator reports the num-
ber of his users and their costs to the mechanism. The users,
mediators and advertisers are all strategic, and thus, free to
produce incorrect reports. In other words, an advertiser may
report incorrect capacity and value, a user may report an in-
correct cost and a mediator may report a smaller number of
users and associate with each one of them an arbitrary cost.

Every time that a new entity arrives, the mechanism has
an opportunity to assign users to advertisers. More specif-
ically, when a mediator arrives the mechanism is allowed
to assign users of the newly arriving mediator to advertis-
ers that have already arrived. Similarly, when an advertiser
arrives the mechanism is allowed to assign users of medi-
ators that have already arrived to the newly arriving adver-
tiser. The objective of the mechanism is to end up with an
assignment of users to advertisers maximizing the gain from
trade. In order to incentivize the mediators and advertisers
to report truthfully, the mechanism may charge the adver-
tisers and pay the mediators. Additionally, the mechanism
is also allowed to recommend for each mediator how much

4The mediators’ utility functions are independent of the amount
of money transferred from the mediators to the users. This choice
was made with the aim of balancing two of the mediators? conflict-
ing objectives: on the one hand, mediators want to make as much
money as possible, and on the other hand, they want to acquire
users and have them use their services rather than switch to another
mediator who is known for paying more money to his users.

5In some cases the assumption that the mechanism has a prior
knowledge about the number of entities might be considered un-
natural. The mechanism we present can be modified using standard
techniques to work with an alternative assumption stating that each
entity arrives at a uniformly random time from some range (for ex-
ample, [0, 1]). We refer the reader to (Feldman, Naor, and Schwartz
2011) for more details.



of the payment he received to forward to each one of his
user. It is important to observe that the utility function of the
mediators is not affected by the forwarding of payments to
the users, and thus, it is reasonable to believe that mediators
follow the forwarding recommendations.

We say that a user is truthful if she reports her true cost.
Similarly, an advertiser is truthful if she reports her true ca-
pacity and value. Finally, a mediator is considered truthful
if he reports to the mechanism his true number of users and
the costs of the users as reported to him; and, in addition, he
also pays the users according to the recommendation of the
mechanism (i.e., he lets them know about their true balance).

We associate a set B(a) of u(a) slots with each advertiser
a ∈ A. This allows us to think of the users as assigned to
slots instead of directly to advertisers. Formally, letB be the
set of all slots (i.e., B =

⋃
a∈AB(a)), then an assignment

is a set S ⊆ B × P in which no user or slot appears in
more than one ordered pair. We say that an assignment S
assigns a user p to slot b if (p, b) ∈ S. Similarly, we say
that an assignment S assigns user p to advertiser a if there
exists a slot b ∈ B(a) such that (p, b) ∈ S. It is also useful
to define values for the slots. For every slot b of advertiser
a, we define its value v(b) as equal to the value v(a) of a.
Using this notation, the gain from trade of an assignment S
can be stated as: GfT(S) =

∑
(p,b)∈S [v(b)− c(p)].

Finally, let us define two additional useful shorthands.
Given a set A′ ⊆ A of advertisers, we denote by B(A′) =⋃
a∈A′ B(a) the set of slots belonging to the advertisers of

A′. Similarly, given a set M ′ ⊆ M of mediators, P (M ′) =⋃
m∈M ′ P (m) is the set of users associated with the media-

tors of M ′.

Comparison of Costs and Values. The presentation of
our mechanism is simpler when the values of slots and the
costs of users are all unique. Clearly, this is extremely unre-
alistic since all the slots of a given advertiser have the exact
same value in our model. Thus, we simulate uniqueness us-
ing a tie-breaking rule (which must be independent of the
reports of the agents). In the rest of this paper, whenever
costs/values are compared, the comparison is assumed to use
such a tie breaking rule.

Canonical Assignment. Given a set B′ ⊆ B of users and
a set P ′ ⊆ P of slots, the canonical assignment Sc(P ′, B′)
is the assignment constructed as follows. First, we order the
slots of B′ in a decreasing value order b1, b2, . . . , b|B′| and
the users of P ′ in an increasing cost order p1, p2, . . . , p|P ′|.
Then, for every 1 ≤ i ≤ min{|B′|, |P ′|} the canonical as-
signment Sc(B′, P ′) assigns user pi to slot bi if and only if
v(bi) > c(pi).

The canonical assignment is an important tool we use of-
ten in this paper, and it was proved by (Feldman and Gonen
2016) that Sc(P ′, B′) is always an assignment of users from
P ′ to slots of B′ maximizing the gain from trade (among all
such assignments). Occasionally, we refer to the user or slot
at location i of a canonical assignment Sc(P ′, B′), by which
we mean user pi or slot bi, respectively.

3 Our Mechanism
In this section we describe and analyze our dynamic mech-
anism “Observe and Price Mechanism” (OPM). OPM as-
sumes |Sc(P,B)| > 0, and that there exists a value α ∈
[|Sc(P,B)|−1, 1], known to the mechanism, such that we
are guaranteed that, for every advertiser a ∈ A and medi-
ator m ∈M :

u(a)

|Sc(P,B)|
≤ α and

|P (m)|
|Sc(P,B)|

≤ α .

In other words, α is an upper bound on how large can the ca-
pacity of an advertiser or the number of users of a mediator
be compared to the size of the optimal assignment Sc(P,B).
We remind the reader that α can be informally understood as
a bound on the market importance of any single entity.

A description of OPM is given as Mechanism 1. Notice
that Mechanism 1 accepts a parameter r ∈ (0, 1/2] whose
value is specified later. Additionally, Mechanism 1 often
refers to parameters of the model that are not known to the
mechanism, such as the value of an advertiser or the number
of users of a mediator. Whenever this happens, this should
be understood as referring to the reported values of these
parameters.

Mechanism 1: Observe and Price Mechanism (OPM)
1. Draw a random value t from the binomial distribution
B(|A|+ |M |, r), and observe the first t entities that arrive
without assigning any users. Let AT and MT be the set
of the observed advertisers and mediators, respectively.
We later refer to this step of the mechanism as the “ob-
servation phase”.

2. Let p̂ and b̂ be the user and slot, respectively, at location
d(1−2r−1· 3

√
α)·|Sc(P (MT ), B(AT ))|e of the canonical

assignment Sc(P (MT ), B(AT )). If (1 − 2r−1 · 3
√
α) ·

|Sc(P (MT ), B(AT ))| ≤ 0, then the previous definition
of p̂ and b̂ cannot be used. Instead, define p̂ as a dummy
user of cost −∞ and b̂ as a dummy slot of value∞. We
say that a slot b or a user p corresponding to an entity
that arrived after the observation phase is assignable if
v(b) > v(b̂) or c(p) < c(p̂), respectively.

3. Let σE be the sequence of the entities that arrived so far
after the observation phase. Initially σE is empty, and en-
tities are added to it as they arrive.

4. For every arriving entity:
a. Add the new entity to the end of σE .
b. If the arriving entity is a mediator m (advertiser a),

then, as long asm (a) has unassigned assignable users
(slots) and there is an advertiser (mediator) in σE hav-
ing unassigned assignable slots (users), do:
• Let a (m) be the earliest advertiser (mediator) in σE

having unassigned assignable slots (users).
• Assign the unassigned assignable user of mediator
m with the lowest cost to an arbitrary unassigned
assignable slot of a, charge an amount of v(b̂) from
advertiser a and pay c(p̂) to mediator m.

c. For every mediator m ∈ σE , recommend m to trans-
fer his assigned users an additional amount that guar-



antees the following:
• If all the assignable users ofm are assigned, the ad-

ditional amount should increase the total payment
received so far by each assigned user of m to c(p̂).
• Otherwise, let p be the unassigned assignable user

of m with the minimum cost. In this case the ad-
ditional amount should increase the total payment
received so far by each assigned user of m to c(p).6

We would like to note that OPM is based on a mecha-
nism of (Feldman and Gonen 2016) named “Threshold by
Partition Mechanism”, and the analyses of both mechanisms
go along similar lines. However, OPM introduces additional
ideas that allow it to work in a dynamic setting. In partic-
ular, OPM uses an involved recommended payments updat-
ing rule that keeps it three-sided continuously individually
rational. Moreover, OPM is able to use an observation phase
whose size is a small fraction of the entire input (for α� 1),
whereas the analysis of the mechanism of (Feldman and Go-
nen 2016) relies on the symmetry properties induced by an
even partition of the input (which is inappropriate in a dy-
namic setting).

Let us start the analysis of OPM with the following simple
observation, showing that OPM obeys the restriction of our
model on the way a mechanism may update its assignment.
Observation 3.1. Each time OPM assigns a user to a slot,
either the user belongs to the newly arrived mediator or the
slot belongs to the newly arrived advertiser.

In the rest of this section we prove the following restate-
ment of Theorem 1.1, which implies the original statement
of the theorem from Section 1.1. Due to space constraints,
the part of the proof proving the competitive ratio guaran-
teed by Theorem 1.1 and the proofs of some of the following
observations are deferred to the full version of this paper.
Theorem 1.1. OPM is budget balanced, three-sided continu-
ously individually rational, three-sided incentive compatible
and (1− r− 22r−1 · 3

√
α− 10e−2/

3
√
α)-competitive. Hence,

for r = min{1/2, 4 6
√
α} the competitive ratio of OPM is at

least: 1− 9.5 6
√
α− 10e−2/

3
√
α.

One part of Theorem 1.1 is proved by the following ob-
servation.
Observation 3.2. OPM is budget balanced.

We prove the observation by showing that whenever OPM
assigns a user p to a slot b, it charges the advertiser of b
more than it pays the mediator of p. We omit the details of
the proof due to space constants.

Following is a useful observation about OPM that we oc-
casionally use in the next proofs.
Observation 3.3. OPM preserves the invariant that one of
the following is always true immediately after OPM pro-
cesses the arrival of an entity:

6Note that at every point in time m is budget balanced since he
receives a payment of c(p̂) for each one of his assigned users, and
the total amount recommended for him to pay to each one of these
users is either c(p̂) or equal to the cost of some assignable user (and
thus, is upper bounded by c(p̂)).

1. OPM assigned all the assignable users of mediators that
have already arrived.

2. OPM assigned users to all the assignable slots of adver-
tisers that have already arrived.

We are now ready to prove the incentive parts of Theo-
rem 1.1. Specifically, we prove three lemmata showing that
OPM is three-sided continuously individually rational and
three-sided incentive compatible. The first lemma analyzes
the incentive properties of OPM for users.

Lemma 3.4. For every user p whose mediator m is truthful,
OPM is continuously individually rational for p, and truth-
fulness is a dominant strategy for her.

Proof. If m arrives during the observation phase (i.e., m ∈
MT ), then no user of m is ever assigned to a slot or paid;
which makes the lemma trivial. Thus, we assume in the rest
of the proof that m arrives after the observation phase.

Note that OPM calculates the threshold c(p̂) based on the
reports of advertisers and mediators in AT and MT , respec-
tively. Thus, p, who is associated with a mediator not belong-
ing to MT , cannot affect this threshold. Next, let us denote
by k the number of users ofm that are assigned to slots when
p reports a cost smaller than c(p̂). We claim that k is inde-
pendent of the exact cost reported by p, as long as this cost
is smaller than c(p̂). The reason for that is that most of the
time OPM accesses the reported cost of p only by checking
whether p is assignable, and the answer for that check does
not change as long as the reported cost of p is smaller than
c(p̂). The exact value of c(p) is only used by OPM after OPM
decides to assign some user of m to a slot, and then this ex-
act value is used to decide which user of m will be assigned
to the slot—which does not affect k.

Let p′ be the user of m with the kth smallest cost among
his users that are not p. If m does not have k users other
than p, then p′ is a dummy user of cost∞. In the next two
paragraphs we show that p is assigned to a slot if and only if
she reports a cost smaller than min{c(p̂), c(p′)}. Moreover,
when p is assigned to a slot the total payment she gets is this
minimum (which is her critical value). Clearly, the incentive
compatibility of OPM for p follows from this claim.

Let us begin proving the above claim by showing that
p is left unassigned when she reports a cost larger than
min{c(p̂), c(p′)}. There are two cases to consider. If p re-
ports a cost larger than c(p̂) then she is not assignable, and
thus, she is left unassigned. On the other hand, consider the
case that p reports a value smaller than c(p̂), but larger than
c(p′). In this case p is not one of the k users of m with the
smallest reported costs, and thus, is again left unassigned.

Next, we prove the other side of the above claim, i.e., that
when p reports a cost smaller than min{c(p̂), c(p′)} she is
assigned and the total payment she gets is this minimum.
The fact that p reports a value smaller than c(p̂) implies that
p is assignable, and the fact that she reports a value smaller
than c(p′) guarantees that p is one of the k users of m with
the smallest reported costs. This already guarantees that p
is assigned to some slot, and that p′ is the unassigned user
of m with the smallest cost when OPM updates for the last
time the recommended total payment from m to p (unless



p′ is a dummy user). Hence, the recommended total pay-
ment for p is determined as follows. If p′ is assignable (i.e.,
c(p′) < c(p̂)), then the recommended total payment for p
is set to c(p′). Otherwise, m has no unassigned assignable
users left, and thus, the recommended total payment to p is
set to c(p̂) < c(p′).

It remains to prove that OPM is continuously individually
rational for p, i.e., that the utility of p can only increase over
time when p is truthful. The first time that the utility of p
might change is when p is assigned. When this happens p
is immediately payed an amount equal either to c(p̂) or to
the cost of an unassigned assignable user of m. Since OPM
chooses the user to assign as the unassigned assignable user
of m with the lowest cost, both possible payments are larger
than c(p), and thus, the utility of p does not become nega-
tive following its assignment. Next, we prove that the rec-
ommended total payment for p can only increase over time,
which proves that p’s utility can only increase from the mo-
ment p is assigned. To see why that is true, recall that, at ev-
ery time point in which OPM updates the recommended total
payment to p, this total payment is updated to be either the
cost of the unassigned assignable user of m with the lowest
cost, or c(p̂) if m has no unassigned assignable users left.
As long as m has unassigned assignable users this update
rule yields a recommended total payment which can only in-
crease over time since users occasionally get removed from
the set of unassigned assignable users of m (when they get
assigned), but no user is ever added to this set. Moreover, the
recommended total payment to p also increases when the last
unassigned assignable user of m gets assigned since the rec-
ommended total payment before this point was equal to the
cost of some assignable user of m, which is smaller, by def-
inition, than the new recommended total payment c(p̂).

The next lemma analyzes the incentive properties of OPM
for mediators.

Lemma 3.5. For every mediatormwhose users are truthful,
OPM is continuously individually rational for m, and truth-
fulness is a dominant strategy for him.

Proof. If m arrives during the observation phase (i.e., m ∈
MT ), then no user of m is ever assigned to a slot and m
receives no payment. Hence, the lemma is trivial in this case.
Thus, we assume in the rest of the proof that m arrives after
the observation phase.

Note that OPM calculates the threshold c(p̂) based on the
reports of advertisers and mediators in AT and MT , respec-
tively. Thus, m, who does not belong to MT , cannot affect
this threshold. Whenever a user p ∈ P (m) is assigned to a
slot the utility of m (and the user) decreases by c(p) and in-
creases by the additional payment m gets, which is c(p̂). In
other words, the utility of m changes by c(p̂) − c(p) (inde-
pendently of the amount m forwards to p). When m is truth-
ful this change is always non-negative since the assignment
of p implies that she is assignable, i.e., her reported cost is
smaller than c(p̂). This already proves that each assignment
of a user ofm increases his utility by a non-negative amount
when he is truthful (assuming his users are also truthful),
thus, OPM is continuously individually rational for m.

Let s be the number of assignable users ofm, according to
his report. We claim that there exists a value k which is inde-
pendent of the report of m such that for any report of m the
mechanism assigns the min{k, s} users of m with the low-
est reported costs. Before proving this claim, let us explain
why the lemma follows from this claim. The above descrip-
tion shows that the utility of m changes by a c(p̂)− c(p) for
every assigned user p ∈ P (m), thus, m wishes to assign as
many as possible users having cost less than c(p̂), and if he
cannot assign all of them then he prefers to assign the users
with the lowest costs. By being truthful m guarantees that
only users of cost less than c(p̂) are considered assignable,
and thus, have a chance to be assigned. Moreover, by the
above claim OPM assigns the k assignable users of m with
the lowest costs (or all of them if s < k), which is the best
resultm can hope for given that at most k of his users can be
assigned. Hence, truthfulness is a dominant strategy for m.

We are only left to prove the above claim. Note that Ob-
servation 3.3 implies that OPM assigns no users of m as long
as there are mediators appearing earlier in σE which still
have unassigned assignable users. Once there are no more
such mediators, OPM assigns users of m, in an increasing
costs order, to unassigned assignable slots till one of two
things happens: either m runs out of unassigned assignable
users, or the input for OPM ends. This means that when the
input for OPM ends before all the assignable users of medi-
ators appearing before m in σE are assigned, then no users
of m are assigned and the claim holds with k = 0. Other-
wise, we choose k to be the number of unassigned assignable
slots immediately before OPM assigns the first user of m
(we count in k both unassigned assignable slots of advertis-
ers that have already arrived at this moment and unassigned
assignable slots of advertisers that arrive later). Notice that
the report ofm does not affect the behavior of OPM up to the
moment it starts assigning users ofm, thus, k is independent
of the report of m. If s > k, then the k users of m with the
lowest costs are assigned before OPM runs out of input and
stops. Otherwise, if s ≤ k then OPM stops assigning users of
m only after assigning all the s assignable users of m.

Finally, the next lemma considers the incentive properties
of OPM for advertisers. The proof of this lemma is analogous
to the proof of the previous lemma (with slots exchanging
roles with users, v(b̂) exchanging roles with c(p̂), etc.), and
thus, we omit it.
Lemma 3.6. For every advertiser a, OPM is continuously
individually rational for a, and truthfulness is a dominant
strategy for her.

4 Simulations
We have used simulations to study the empirical perfor-
mance of our mechanism OPM. Our simulations involved
two methods for generating the input. The more interest-
ing of these methods, which we call real-data based input
was as follows. The creation of the advertisers was based on
data collected as part of a Horizon 2020 project from Face-
book campaigns targeting Europeans between the ages 18
and 22 who are interested in entertainment. Every bid col-
lected consisted of a budget for the relevant campaign, the



maximal CPC (cost-per-click) value, the minimal CPC value
and the median CPC value that the advertiser was willing to
pay. Based on these bids we constructed three advertisers
for our generated input, one advertiser for each one of the
CPC values. More specifically, let β be the budget specified
by the bid, and let δ be one of the three CPC values spec-
ified by this bid, then the advertiser created for this CPC
value has a value of δ and a capacity of β

100δ .7 For every ad-
vertiser we also created a single mediator having the same
number of users as the capacity of the advertiser. Every user
of these mediators was assigned an independent cost chosen
uniformly at random from the range between the smallest
and largest CPC values encountered in the real world bids.
To verify that the data fed into the mechanism was unbiased,
we designed a secondary input generation method which we
call the random bids input. The way input is generated by
this method is very similar to the way real-data based in-
put was generated, except that the advertisers’ values were
selected as uniformly random independent values between
the smallest and largest CPC values encountered in the real
world bids (rather then being taken directly from the input
bids, as in the real-data based input).

Our first simulation was designed to study the effect of
market size on the performance of the mechanism. In this
experiment we used the above methods to generate markets
of various sizes and then we sent the entities of each gener-
ated market into OPM in a uniformly random order. The ob-
servable performance of the assignments produced by OPM
(as a percent of the optimal canonical assignment) are de-
picted in Figure 1. In order to reduce variance and error mar-
gins, every value given by this figure (and the next one) was
produced by averaging 3000 independent executions. As ex-
pected, the performance of the algorithm improves with the
size of the market (as the size of the market is roughly in-
versely proportional to α). Moreover, one can observe that
the performance of the mechanism is quite good even for
moderate size markets, which is better than what can be pre-
dicted based on our theoretical result alone.

In the previous experiment, we used the value of the pa-
rameter r of OPM which was specified by the version of The-
orem 1.1 given in Section 3. Our second simulation was de-
signed to study the possibility of improving the performance
of the mechanism by varying the value of r. Specifically, we
repeated the previous experiment with a market of 11961
advertisers (which is close to the size of the largest market
we considered before), but varied the value of the parameter
r. The results of this experiment are depicted in Figure 2.
As in the previous experiment, we see again that using the
value of r specified by Theorem 1.1 (1/2 in this case) leads
to good performance for both input generation methods. For
the real-data based input, varying r does not improve the
performance of OPM, but for the random input bids one can

7Our experiments are based on only a fraction of the entire data
set, which significantly increased the market strength of the entities
in the input. To compensate for this increase, and keep the market
strength of each advertiser in the simulation similar to the market
strength of the corresponding real world advertiser, we introduced
a division by 100 into the capacity formula.
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Figure 1: The performance of OPM as a function of the mar-
ket size. The number below each column specifies the num-
ber of advertisers in the market.

significantly improve the outcome by decreasing r. This is
likely a consequence of a higher variance in the random bids
input, which allows OPM to calculate good thresholds based
on a shorter observation phase (which are induced by de-
creasing r). Thus, for the random bids input, decreasing r
leads to improved performance as it allows OPM to harvest
value from a larger fraction of the market while inducing
only a weak adversarial effect on the selected thresholds.
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Figure 2: The performance of OPM as a function of the value
of the parameter r on markets with 11961 advertisers.

5 Conclusion
In this paper we have presented a dynamic model for a fore-
seeable form of the online advertising market based on prin-
cipals suggested by (Feldman and Gonen 2016), and de-
scribed a mechanism called OPM for it. OPM is the first mech-
anism for a multi-sided market that guarantees the economic
properties of budget balance, incentive compatibility and in-
dividual rationality while having a non-trivial theoretical ap-
proximation guarantee. For large markets, such as the on-
line advertising market, the theoretical competitive ratio of
OPM approaches 1. However, this theoretical guarantee be-
comes much weaker (or even not relevant) for smaller mar-
kets, and thus, we have complimented it with simulation re-
sults. These results suggest that OPM performs well in prac-
tice even for markets of moderate size.
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