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Abstract

We consider a scenario where a user has to make a set of cor-
related decisions and we propose a computational modeling
of the deliberation process. We assume the user compactly
expresses her preferences as soft constraints. We design a se-
quential procedure that uses Decision Field Theory to model
the decision making on each variable. We compare our se-
quential approach to one where a single decision is made
over the set of all alternatives on randomly generated tree-
shaped Fuzzy Constraint Satisfaction Problems. Our prelim-
inary result are promising: they show that the sequential ap-
proach outperforms the non-sequential one in terms of execu-
tion time and returns choices of similar quality.

Introduction and Motivation
Preferences are a very important notion in decision making.
As such they have been studied in multiple disciplines such
as psychology, philosophy, business and marketing.

Recently, preference reasoning has grown into an impor-
tant topic in computer science and specifically in Artificial
Intelligence. Preference models are currently used in many
AI applications, such as scheduling and recommendation en-
gines.

On the other hand, in psychology, Decision Field Theory
(DFT) (J.R. Busemeyer 1993) formalizes the process of de-
liberation in decision making. In fact, when a person is con-
fronted with a decision, she will anticipate each course of ac-
tion and will try to evaluate all the possible consequences ac-
cording to different criteria. While DFT has mainly tackled
the problem of making a single decision, both in real life and
in artificial intelligence applications, decision are more com-
plex and it can be helpful to organized them in a combina-
torial structure over which decisions can be applied sequen-
tially. There are several approaches to modeling preferences
compactly (Rossi, K.B. Venable, and Walsh 2011), such as,
for example, soft constraints (Meseguer, Rossi, and Schiex
2005). In this paper, we focus on the later, a formalism in
which variables are assigned values from their domains, and
there are constraints, involving subsets of variables and asso-
ciating to simultaneous assignments of the constrained vari-
ables a preference value. We use soft constraints to support
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a deliberation process performed through DFT and we con-
sider a sequential approach, where deliberation is applied to
each variable. In our framework, preferences over the set of
alternatives according to a criteria (called attribute, follow-
ing the DFT literature) are decomposed into a fuzzy con-
straint satisfaction problem (F CSP). Each attribute is as-
sociated with a FCSP. We test our approach on randomly
generated tree-shaped FCSPs assuming two attributes and
setting DFT parameters in a standard way. We compare the
results obtained applying the deliberation process sequen-
tially to those obtained by a single deliberation step over the
entire combinatorial domain. As expected the sequential ap-
proach outperforms the one-shot procedure in terms of time.
Moreover, it focuses on a relatively small set of alternatives
compared to the size of the choice space and the deliberated
assignments are, on average, of high quality with respect to
the preferences in the soft constraint problems representing
the attributes. Our work has two objectives: the first one is to
provide a computational model which can help understand
human decision making over complex domains; the second
one is to investigate DFT as means of incorporating a form
of uncertainty into the soft constraint formalism. To the first
end, we note that our sequential approach appears to be cog-
nitively more plausible as it is far more likely for humans to
break complex decisions into interconnected sub-problems,
rather than try to deliberate directly on a large set of com-
plex objects. The next step on our agenda in this respect is
to study the effect of decomposing complex deliberations in
terms of phenomena which have been observed in behav-
ioral studies of human decision making, such as the similar-
ity, attraction and compromise effect, and that DFT has been
shown to model effectively(R. Roe 2001). In terms, of using
DFT as a paradigm to extend soft constraints, we note that
the DFT simulation of deliberation, which is modeled as an
oscillation between evaluation criteria for different scenar-
ios, can be used to model uncertainty about which are the
true preferences. Furthermore, DFT allows to specify a sim-
ilarity measure between options and to express how a high
preference on an option can influence the preference of sim-
ilar or dissimilar options. Both aspects extend the expressive
power of soft constraints where preferences are assumed to
be known (or static), and those of different options influence
each other only through shared variable assignments.

This paper is organized as follows. The first section re-



views the basic notions regarding soft constraints and mul-
tialternative decision field theory (MDFT). The second sec-
tion presents the description of sequential decision making
over soft-constraint networks exemplified on a detailed run-
ning example. The third section describes non-sequential de-
cision making on the same running example. The last two
sections of the paper, before concluding, present experimen-
tal results and a discussion of related work.

Background
In this section, we introduce some basic notions that will
be useful in the rest of the paper. First, we will define soft
constraint problems. Then, we will briefly describe multial-
ternative decision field theory.

Soft Constraints A soft constraint (Meseguer, Rossi, and
Schiex 2005) requires a set of variables and associates each
instantiation of its variables to a value from a partially or-
dered set. More precisely, the underlying structure is a c-
semiring which consist of the following, 〈A,+,×, 0, 1〉,
where A is the set of preference values, + induces an or-
dering over A (where a ≤ b iff a + b = b), × is used
to combine preference values, and 0 and 1 are respectively
the worst and best element. A Soft Constraint Satisfaction
Problem (SCSP) is a tuple 〈V,D,C,A〉 where V is a set
of variables, D is the domain of the variables and C is a
set of soft constraints (each one involving a subset of V )
associating values from A. An instance of the SCSP frame-
work is obtained by choosing a specific preference struc-
ture. Choosing SFCSP = 〈[0, 1], max,min, 0, 1〉 means
that preference values are in [0, 1], we want to maximize
the minimum preference value, the worst preference value
is 0 and the best preference value is 1. This is the setting
of fuzzy CSPs (FCSPs) (Schiex 1992; Meseguer, Rossi, and
Schiex 2005), that we will use this paper. Figure 1 shows
the constraint graph of an FCSP where V = {X,Y, Z},
D = {a, b} and C = {cX , cY , cZ , cXY , cY Z}. Each node
models a variable and each arc models a binary constraint,
while unary constraints define variables’ domains. For ex-
ample, cY is defined by the preference function fY that as-
sociates preference value 0.4 to Y = a and 0.7 to Y = b.
Default constraints such as cX and cZ , where all variable as-
signments get value 1, will often be omitted in the following
examples.

Solving an SCSP consists of finding the ordering induced
by the constraints over the set of all complete variable as-
signments. In the case of FCSPs, such an ordering is a total
order with ties. In the example above, the induced ordering
has (X = a, Y = b, Z = b) and (X = b, Y = b, Z = b) at
the top with a preference value 0.5, (X = a, Y = a, Z = a)
and (X = b, Y = a, Z = a) just below with 0.4, and
all others tied at the bottom with preference value 0.2.
Often, however, solving an SCSP is interpreted as finding
an optimal solution, that is, a complete assignment with an
undominated preference value (thus (X = a, Y = b, Z = b)
or (X = b, Y = b, Z = b) in this example). Given a variable
X , we write s↓X to denote the value of X in s. Unless
certain restrictions are imposed, such as a tree-shaped

X Y Z

X = a 1
X = b 1

Y = a 0.4
Y = b 0.7

Z = a 1
Z = b 1

X = a, Y = a 0.9
X = a, Y = b 0.8
X = b, Y = a 0.7
X = b, Y = b 0.6

Y = a, Z = a 0.9
Y = a, Z = b 0.2
Y = b, Z = a 0.2
Y = b, Z = b 0.5

Figure 1: Example of an FCSP.

constraint graph, finding an optimal solution is an NP-hard
problem.

Constraint propagation may improve the search for an
optimal solution. In particular, given a variable order-
ing o, a FCSP is directional arc-consistent (DAC) if,
for any two variables x and y linked by a fuzzy con-
straint, such that x precedes y in the ordering o, we
have that, for each a in the domain of x, fx(a) =
maxb∈D(y)(min(fx(a), fxy(a, b), fy(b))), where fx, fy ,
and fxy are the preference functions of cx, cy and cxy . When
the problem has a tree-shape and the variable ordering is
compatible with the father-child relation of the tree, DAC is
enough to find the preference level of an optimal solution
(Meseguer, Rossi, and Schiex 2005). Such an optimal pref-
erence level is the best preference level in the domain of the
root variable. To find an optimal solution, it is then enough to
perform a backtrack-free search which instantiates variables
in the same order used for DAC.

In our running example, if we choose the variable
ordering 〈X,Y, Z〉, achieving DAC means first en-
forcing the property over the constraint on Y and
Z and then over the constraint on X and Y . The
first phase modifies the preference value of Y = b to
max(min(fY (b), fY,Z(b, a), fZ(a)),min(fY (b), fY,Z(b, b),
fZ(b))) = max(min(0.7, 0.2, 1),min(0.7, 0.5, 1)) =
max(0.2, 0.5) = 0.5 . Similarly, the second phase sets the
preference values of both X = a and X = b to 0.5.

We note that, by achieving DAC w.r.t. ordering o, we ob-
tain a total order with ties over the values of the first variable
in o, where each value is associated to the preference of the
best solution having such a variable instantiated to such a
value. In our running example, achieving DAC brings both
values of X in a tie and in top(X,P ), with preference value
0.5, that is the preference value of an optimal solution.

Multialternative Decision Field Theory Decision Field
Theory attempts to formalize the deliberation process by as-
suming that a decision maker’s preference for each option
evolves during deliberation and by integrating a stream of



comparisons of evaluations among options on attributes over
time (J.R. Busemeyer 1993). DFT has been extended to mul-
tialternative preferential choice, where settings with more
than two options are considered. In DFT a valence value
vi(t) is associated with a choice to be made at any moment
in time t, which represents the advantage or disadvantage of
option i when compared with other options with respect to
some attribute(R. Roe 2001). For example, options could be
different car models with attributes being fuel efficiency and
comfort. The valence vector, V (t) = CMW (t) is a product
of three matrices (M ,W (t) and C), has a dimension equal
to the number of options and represents the valence of each
option. The first matrix, M , contains the personal evalua-
tion of each option with respect to the attributes. The second
component is a vector of attention weights, W (t), allocated
to each attribute at a particular moment in time. The third
and final matrix C contains parameters describing how to
aggregate the evaluation of an option with the evaluation of
other options in order to obtain its advantage (or disadvan-
tage). Furthermore, at any moment in time, each alternative
is associated with a preference strengthP (t). Strength for al-
ternative i at time t, denoted Pi(t) represents the integration
of all the valences considered for alternative i from the start
of the deliberation process to time t. A new state of prefer-
ence P (t+ 1) is formed at each time step from the previous
preference P (t) and the new input valence vector, V (t), as
follows: P (t+1) = SP (t)+V (t+1). In this formula, ma-
trix S models how the preference of one option influences
the preference of another option. For example, one can as-
sume a higher (negative) interaction among options which
are very similar. We provide a detailed example in the next
section.

Sequential decision making over soft
constraint networks

We assume a set of correlated decisions to be made, X =
{X1, . . . , Xn}, where each variable Xi can take different
values from its domain D(Xi) = {σ1, ..., σm}. To represent
the agent’s personal evaluation we use a FCSP defined over
the variables in X . We use one FCSP for each attribute. In
the car example mentioned above, variables would describe
different car models, and could be, for example, brand, en-
gine type and number of seats. Then, we would have a FCSP
for each attribute, that is one describing the preferences in
terms of fuel efficiency and the other in terms of comfort.
The preference values are used to populate the M matrix at
each step of the decision process. We recall that a FCSP is
associated with a graph where nodes correspond to variables
and edges to constraints. As an initial step we consider FC-
SPs where the constraint-graph is tree-shaped. This allows
us to topologically sort the variables in an ordering which
we denote by O = X1 > X2 > ..... > Xn. The idea is
to sequentially find a value for each variable Xi via a DFT
deliberation process following order O. The sequential pro-
cedure is a sequence of n steps, where at each step i:

1. We extract the subjective preference of the user on the
values in the domain of Xi. To do this, we will enforce
DAC on the FCSP, in reverse order w.r.t. O.

2. Then, DFT is applied to Xi, returning a deliberated
assignment for variable Xi, say σi. We write this as:
DFT (Xi) = σi.

3. Finally, DAC is applied to propagate the effect of the as-
signment in both soft constraint networks following order
O.

After n steps have been executed, we obtain a final combi-
natorial decision, that is, we will have selected one value for
each variable. One may wonder why step 1 is necessary. As
we have mentioned in the background section on soft con-
straints, the effect of applying DAC on a tree-shaped Fuzzy
CSP is to have the preferences on the domain values of each
variable coincide with the highest preference of a solution
containing that assignment. Intuitively, this means that the
new preferences take into account the information induced
on that assignment by the rest of the network. For exam-
ple, one may in general prefer a certain car brand, but, if
they only have two-seaters available and she is looking for
a family car, then this should impact her preferences when
deliberating on the brand. If we were to skip this step then
the deliberation process would be using preferences which
are not realistic, that is, are completely disconnected from
what is actually achievable given the rest of the network.

We will now describe the procedure in more detail using
an example. Assume we have a user who has to decide on
what to have for dinner. His preferences in terms of attributes
taste and health on the available options are expressed by
two FCSPs depicted respectively in Figure 2 and Figure 3.

S W

S = v 0.7
S = m 1

W = r 1
W = w 0.8

S = v, W = r 1
S = v, W = w 0.3
S = m, W = r 0.7
S = m, W = w 0.4

Figure 2: Taste preferences expressed as a Fuzzy CSP.

S W

S = v 0.8
S = m 0.4

W = r 0.7
W = w 0.3

Figure 3: Health preferences expressed as a Fuzzy CSP.



S W

S = v 0.7
S = m 0.7

W = r 1
W = w 0.8

S = v, W = r 1
S = v, W = w 0.3
S = m, W = r 0.7
S = m, W = w 0.4

Figure 4: Taste preferences expressed by a FCSP after achiev-
ing DAC.

Both FCSPs are defined on same set of variables, that is,
Soup, denoted by S, with domain {m, v} for meat and veg-
etable respectively and Wine, denoted with W , with values
{w, r} for white and red. The user, for example, prefers meat
soup to vegetable soup and prefers red wine with it (see Fig-
ure 2 for all the values of preferences). On the other hand,
the user is also aware tha vegetable soup is healthier than the
meat soup and red wine is healthier than white wine.

In step 1 of our procedure, the user will achieve DAC
on both graphs. This, for example, changes the pref-
erences of the user over Soup. First, it modifies the
taste preference value of S = v to maximum prefer-
ence of any complete assignment involving it, that is, to
max(min(0.7, 1, 1),min(0.7, 0.3, 0.8)) = 0.7. Similarly, it
modifies the preference value of S = m to 0.7.

The taste FCSP is already DAC since there is no constraint
between the two variables. In step 2 DFT is applied to S us-
ing the four preference values from the two FCSPs as in-
put to matrix MS . Let us assume, now, that DFT(S) returns
S = v. Then, all of the preferences tuples with S = m are
set to are set to 0 in both FCSPs and the effect is propagated
to all the network through DAC following O (see Figure 4
and Figure 5).

This step modifies the preference value of W =
r to max(min(1, 1, 0.7),min(1, 0, 0)) = 0.7 and
then modifies the preference value of W = w to
max(min(0.7, 0.3, 0.7),min(0.7, 0, 0)) = 0.3 (see Figure
6). Finally, DFT is applied to W with inputs 0.7 and 0.3 and
the final result is reached. For example, if W = r is deliber-
ated then, overall, we would have chosen to have vegetable
soup and red wine.

Let us now focus on the DFT process performed in Step
2 for variable S. Intuitively, this means that we will simu-
late the deliberation process carried out by the user when
choosing between vegetable and meat soup. This is done by
assuming she alternates between considering the options in
terms of taste and health and converges to a final preference

S W

S = v 0.7
S = m 0

W = r 1
W = w 0.7

S = v, W = r 1
S = v, W = w 0.3
S = m, W = r 0
S = m, W = w 0

Figure 5: Taste preferences expressed by a FCSP after apply-
ing DFT to S, and assuming S = v is deliberated.

S W

S = v 0.7
S = m 0

W = r 0.7
W = w 0.3

S = v, W = r 1
S = v, W = w 0.3
S = m, W = r 0
S = m, W = w 0

Figure 6: Taste preferences after the second round of DAC,
right before DFT is applied to W .

after a number of iterations. More specifically, in our exam-
ple we are considering two alternatives, i.e.m and v, and two
attributes , i.e. taste and health. At any moment in time each
alternative is associated with a valence value. For example,
the choice among soups produces a two dimensional va-
lence vector V (t) = [vSm(t), vSv (t)]. As mentioned before,
this valence vector is determined by three different compo-
nents. V (t) = CMW (t). We recall that matrix,M , contains
the personal evaluation of each option with respect to its at-
tribute,W (t), is the vector containing the weights associated
to each attribute at a given point in time t and matrix C con-
tains parameters describing how to aggregate the evaluation
of an option with the evaluation the other options.

In this example the matrix C is the same for all variables



and is represented by the following values:

C =

[ ]
1 -1
-1 1

In other words, the advantage/disadvantage of an option
w.r.t. the other is simply the difference between their prefer-
ence values.

The attention weights, [WT (t),WH(t)] for the attention
weight matrix W (t) are assumed to fluctuate between [1, 0]
and [0, 1] over time steps according to a simple Bernoulli
process where we assume that the probability of attending
taste (i.e. of picking [1, 0]) is 0.55, and health (i.e. [0, 1]) is
0.45.

The entries for matrix M are obtained from the prefer-
ences over the domain values of S after DAC is performed
in step 1. They are:

MS =

T H[ ]
0.7 0.8 Sv

0.7 0.4 Sm

Summarizing, if we assume that at time twe haveW (t) =
[0, 1], then V (t) = [vSm(t), vSv (t)], where: vSm(t) =
WT (t) ·mSmT +WH(t) ·mSmH−WT (t) ·mSvT−WH(t) ·
mSvH = 0 · 0.7 + 1 · 0.4 − 0 · 0.7 − 1 · 0.8 = −0.4 and
vSv

(t) =WT (t) ·mSvT +WH(t) ·mSvH−WT (t) ·mSmT−
WH(t) ·mSmH = 0 · 0.7 + 1 · 0.8− 0 · 0.7− 1 · 0.4 = 0.4.

In the formula above we have denoted with mXY the en-
try of matrix M corresponding to optionX and attribue Y . A
choice among both soups produces a two-dimensional pref-
erence state P (t) = [PSm

(t), PSv
(t)], where a new state

of preference P (t + 1) is formed at each instant from the
previous preference state P (t) and the new input valence
vector,V (t), according to the following stochastic equation:
P (t+1) = SP (t)+V (t+1), where S is the feedback matrix.
We set the parameters for the feedback matrix as follows: the
self-connections are set to a high value (Sii = 0.94) and the
inhibitory connections between the attributes are set to very
low values (Ssm,sv = Ssv,sm = −0.001) because we treat
these two alternatives as being very different (for example a
spicy, creamy meat soup and a clear, mild vegetable soup).

S =

Sv Sm[ ]
0.95 -0.001 Sv

-0.001 0.95 Sm

It is important to mention that we define the parameters
in the DFT model in a similar way as the DFT literature
(J.R. Busemeyer 1993). In the DFT literature (J.R. Buse-
meyer 1993) two criteria are considered to decide when to
stop the deliberation process. In the first one, a fixed time
is set and the option with the highest preference after that
time has elapsed is returned. Another possibility is to de-
fine a threshold on preferences and to return the first option
which passes that threshold. In this paper we consider the

first option and we define the number of iterations the de-
liberation takes place for each variable. In the experiments
which we describe later, we set this number to be the same
on all variables, since they all have the same domain size.

Non-Sequential approach
Given our domain, another possibility for making an over-
all decision is to run the deliberation process only once over
the set of candidate options consisting of all complete as-
signments. We believe this is unrealistic as, indeed, DFT
is intended to model human decision making under the as-
sumption that the number of possible options is manageable.
Nevertheless, we consider this alternative method primarily
as a means of comparison with the sequential approach.

We assume a single decision to be made over a combina-
torial structure. In other words, each complete assignment to
all variables in X is treated as an option, and its preference
according to the CSPs is its evaluation with respect to the as-
sociated attribute. We evaluate all of complete assignments
via the FCSPs and we use such preferences to populate ma-
trix M . The non-sequential procedure consist of two steps:

1. We compute the subjective preferences for all complete
assignments for each attribute. For one attribute, this can
be implemented, for example, by running DAC on the FC-
SPs and then, for each complete assignment, taking the
minimum preference associated in the FCSP to its single
variable assignments.

2. DFT is applied to the set of all complete assign-
ments returning a final deliberation (X1 = σ1, X1 =
σ2, . . . , Xn = σn).

We will now describe the procedure in more detail us-
ing the same example with two binary variables and two at-
tributes introduced in the previous section (see Figure 2 and
Figure 3). In step 1, the we run DAC on both graphs and we
compute the preferences all complete assignments accord-
ing to both FCSPs. The results are coded into matrix M , as
shown below:

M =

T H


0.7 0.7 Sv,Wr

0.3 0.7 Sv,Ww

0.7 1 Sm,Wr

0.4 0.8 Sm,Ww

Then, similarly to what was done for each variable in the
case of the sequential procedure, DFT is applied to the set of
all complete assignments (4 in this case). The values for the
C and S matrices are defined using the same rationale as in
the single variable case:

C =




1 -1/3 −1/3 −1/3
−1/3 1 −1/3 −1/3
−1/3 -1/3 1 −1/3
−1/3 -1/3 −1/3 1



S =

SvWr SvWw SmWr SmWw


0.95 -0.005 −0.005 0 SvWr

−0.005 0.95 0 −0.005 SvWw

−0.005 0 0.95 −0.005 SmWr

0 -0.005 −0.005 0.95 SmWw

More in detail, we set the parameters for the feedback ma-
trix S as follows: the self-connections are set to a high value
(Sii = 0.95) and the inhibitory connection between two op-
tions is a negative number obtained by dividing the number
of variables that are assigned the same value in both options
by the total number of variables. This preserves the intu-
ition that the more two options are similar the smaller the
inhibitory effect between them should be.

As far as the attention weights on attributes, they are de-
fined exactly as in the previous section, that is, as fluctuating
between [1, 0] and [0, 1] over time steps with probability of
attending taste of 0.55 and health of 0.45. The stopping cri-
terion is a limit on the number of iterations. For example, in
our experiments, which we describe below, we set this num-
ber to be 20 · n, where n is the number of variables.

Exeprimental results
We have implemented both the sequential and non-
sequential decision making approach and we have tested
them on randomly generated problems. We consider a set-
ting with two attributes. Thus, each generated instance com-
prises of a pair of tree-shaped fuzzy problems defined over
the same set of binary variables. We consider a number of
variables ranging between 2 and 8 with increments of 2 and
a constraint tightness of 20%, meaning that, in each con-
straint, 20% of the tuples are associated with preference 0.
For both of the approaches, the values for the DFT matrices
are set as described in our running example. In the sequen-
tial case, deliberation is stopped after 20 iterations on each
variable and in the non-sequential case after 20·n iterations
where n is the number of variables.

Figure 7: Average execution time for the sequential and non
sequential approach when varying the number of variables.

In Figure 7 we show the comparison of the two ap-
proaches in terms of running time when varying the number
of variables. The plotted results are an average over 10000
runs for each number of variables. For both approaches, we

take into account also the time necessary to extract the val-
ues for theM matrices from the FCSPs. Not surprisingly, the
sequential procedure is faster and the gap between the two
running times becomes exponentially larger as the number
of variables grows.

Ideally one would want the two approaches to return the
same set of choices, modulo the uncertainty inherent in the
DFT process. In other words, after running the two ap-
proaches the same number of times on a given instance, so-
lutions would ideally be returned as deliberated with similar
frequency by both approaches. However, this is not the case,
as, by decomposing the decision-making into a set of local
deliberation steps, we lose information and we incur in a sit-
uation similar to the discursive dilemma in judgment aggre-
gation (Kornhauser and Sager 1986) and sequential voting
(Lang and Xia 2009; Pozza et al. 2011).

Figure 8: Frequency with which solutions are returned as
deliberated in one instance of eight variables.

Figure 8 shows the frequency with which solutions are
returned in a problem with 8 nodes after running both ap-
proaches 100 times. As we can see, out of the 28 possible
choices, only 9 are returned by the sequential approach and
2 are returned by the non-sequential one. We performed this
same experiment on 100 different instances of 8 nodes and
we observed a similar trend. The average size of the set con-
taining solutions returned at least once by the sequential ap-
proach is 3.57, over a total of 256, while the size of the non-
sequential approach is 1.61. Indeed most of the time the two
sets are disjoint, as the average size of their intersection is
0.07. This can also be seen in Figure 9, where we plot the
average frequency difference for each of the 256 solutions,
where we have only counted cases in which the solution ap-
peared at least once as output for at least one procedure.

It is not surprising that the sequential approach has
slightly more variability in its outputs. In fact, the un-
certainty modeled by the probability distribution over the
weights of the attributes affects the decision of each vari-
ables. Instead, in the case of the non-sequential approach
it only contributes once and at the global level. Nonetheless,
both methods are capable of focusing only a few alternatives
and manage to efficiently weed out unattractive candidates.

This is further corroborated by an analysis we have per-
formed on the relationship between the solutions deliberated
by the DFT-based decision making procedures and the opti-
mal solutions of the FCSPs (that is, the most preferred com-
plete assignments according to each attribute). The results,



Figure 9: Average over 100 instances of eight variables of
the difference in frequency of being returned by the two ap-
proaches for each solution.

obtained from the same set of 100 instances are shown in
Figure 10.

Figure 10: Percentage of times the decision making proce-
dures return solution that are not optimal/ optimal in one/
optimal in both FCSPs.

In most cases the non sequential deliberation process re-
turns a solution which is optimal in at least one of the FCSPs.
This suggests that the subjective preferences given in input
by matrixM have the effect of focusing the deliberation pro-
cess only on solutions which are highly ranked by at least
one attribute. The non-sequential approach, instead, seams
to suffer more from the partial loss of information caused by
decomposing the decision process. In fact, running the de-
liberation process variable by variable implies applying the
effect of both FCSPs variable by variable. The selected as-
signments to previous variables affect future deliberations
on those which are connected to them via constraints. This
makes it much more likely for the sequential approach to de-
viate from standard constraint propagation. In order to asses
the magnitude of this effect in terms of quality of the de-
liberated solutions with respect to the subjective preferences
represented by the attribute FCSPs, we computed the aver-
age difference in preference between the solutions returned
by the two procedures and the the optimal preference of the
FCSPs. In the table below we show these results.

Min Distance Max Distance
Sequential 0.06 0.17

Non-sequential 0.01 0.04

The averages for the non-sequential approach are aligned
with the fact that it often returns a solution which is optimal
in at least one FCSP. However, the distance from optimal of

the solutions deliberated by the sequential approach is also
very small. Thus, it appears that the preference propagation
obtained via DAC is sufficient to guarantee the selection of
a solution which is of high quality for both attributes.

Related Work
While a large literature has been dedicated to studying the
human deliberation process in settings with few, unstruc-
tured alternatives, understanding how humans make deci-
sions over complex or combinatorial structures is for the
most part an unexplored topic. In a recent paper (Samuel
J. Gershman 2017) the authors developed a theory of de-
cision making on combinatorial domains. They adopt com-
positionally structured utility functions as a means to rep-
resent preferences and they use probabilistic reasoning to
predict preferences over new unseen alternatives. While the
combinatorial structure of the alternatives is shared, our ap-
proach is very different from theirs in methods and objec-
tives. The preference models are different as they use utili-
ties and we use a fuzzy constraint-based approach. Further-
more, our goal is to model the variability which is observed
in human decision making when preferences come from dif-
ferent criteria as opposed to predicting preferences over un-
seen options from known (or learned) ones.

Sequencing preference reasoning over soft constraint net-
works is not new. the most related work to ours in this con-
text is (Pozza et al. 2011) where a sequential voting method
over fuzzy constraint problems is presented. In that setting
each voter expresses his preferences as a SCSP and votes are
aggregated variable by variable using a voting rule. Our ap-
proach bears some similarities, in that also in that case DAC
is used as a preprocessing step before voting on each vari-
able. However, while one could view attributes as voters the
way the preference is aggregated by DFT is very different
from the application of a voting rule.

Conclusions and Future Work
We have presented an approach for modeling deliberation
on combinatorially structured domains. We show that de-
composing decision making into a sequence of deliberation
steps performed with DFT is a feasible approach to tackling
this problem. Our future agenda will first focus on under-
standing if the properties such as the similarity, attraction
and compromise effect, which have been identified in be-
havioral studies of humans, can be modeled by the sequen-
tial approach. We also plan to test our model on behavioral
data of human decision making over complex domain and
in data sets in PrefLib (Mattei and Walsh 2013). Finally, we
also intend to investigate the use of other compact prefer-
ence models, such as probabilistic CP-nets(Boutilier et al.
2004) which look like a very interesting candidate to repre-
sent preferences according to attributes and their weights in
the deliberation procedure.
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