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Abstract

We consider the problem of computing a matching in a bi-
partite graph in the presence of one-sided preferences. There
are several well studied notions of optimality which include
Pareto-optimality, rank-maximality, fairness and popularity.
In this paper, we conduct an in-depth experimental study
comparing different notions of optimality based on a vari-
ety of metrics like cardinality, number of rank 1 edges, pop-
ularity, to name a few. Observing certain shortcomings in
the standard notions of optimality, we propose an algorithm
which maximizes an alternative metric called the Area un-
der Profile Curve ratio (AUPCR). To the best of our knowl-
edge, the AUPCR metric was used earlier only as an evalua-
tion metric, and there is no known algorithm to compute an
AUPCR maximizing matching. Finally, we illustrate the su-
periority of the AUPCR-maximizing matching by comparing
its performance against other optimal matchings on synthetic
instances modeling real-world data.

Introduction
The problem of assigning elements of one set to elements of
another set, is motivated by important real-world scenarios
like assigning students to universities, applicants to jobs and
so on. In many of these applications, members of one or both
the sets rank each other in an order of preference. The goal
is to compute an assignment that is “optimal” with respect
to the preferences.

In this paper we focus on the one-sided preference list
model, where members of one set rank a subset of ele-
ments in the other set in a linear order (preferences are as-
sumed to be strict). Several notions of optimality like Pareto-
optimality, rank-maximality, fairness and popularity have
been considered in literature (we give formal definitions of
each of these notions later). For each of the above mentioned
notions of optimality, there are efficient algorithms studied
in the literature to compute the specified optimal matching.
Abraham et al. (2004) describe an algorithm that computes a
maximum cardinality Pareto-optimal matching. Abraham et
al. (2007) present an algorithm to compute a popular match-
ing while Irving et al. (2004); Huang et al. (2016) propose
algorithms that optimize the head/tail of the matching pro-
file (rank-maximal and fair respectively). Maximizing one
metric could however result in poor performance on other
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yardsticks of measure. When comparing two matchings, it is
difficult to measure the quality of the two matchings using
a single scalar value. They can be compared using a variety
of metrics like cardinality, number of matched rank 1 edges
or cardinality, none of which can serve as a sole indicator of
optimality.

Profile based matchings, like rank-maximal or fair match-
ings which optimize for the head or the tail of the profile
can turn out to be biased under certain circumstances. An
alternative is to consider the Area under Profile Curve Ratio
metric introduced by Diebold and Bichler (2017). This met-
ric aims to maximize a measure, that is a weighted sum of
matched edges, with the weight proportional to its position
in the preference list.

In this work, we first present a comprehensive experi-
mental study of the well-studied notions of optimality for
matchings and compare them using different measures. We
then describe the AUPCR metric, and propose algorithms to
compute an AUPCR maximizing matching, and a maximum
cardinality AUPCR maximizing matching.

Finally, we empirically evaluate different matching algo-
rithms on synthetic graphs generated from generator models
specified by Michail (2011) using various metrics. The gen-
erated graphs fall into two categories, one having uniformly
random preference lists and the other having highly corre-
lated preference lists. Our analysis is inspired by the analysis
by Michail (2011), and we additionally consider a ranking
system in which the matchings are ranked based on multi-
ple metrics. These rankings are consequently aggregated to
obtain a single rank, which we use as a coarse indicator of
matching quality.

The AUPCR maximizing matching is experimentally
shown to have good performance across evaluated metrics
on the considered data-sets, and we believe this matching is
well suited for practical applications.

Preliminaries
Consider a set A of applicants and a set P of posts. Every
applicant a has a preference list over a subset of the posts
in P . This list is a linear order (strict list) and is called the
preference list of a over P . The problem is readily repre-
sented as a bipartite graph with vertices V = A ∪ P and an
edge (a, p) is present if p is exists in the preference list of
a. Preferences of applicants are encoded by assigning ranks



to edges. Each edge (a, p) has a rank i if a considers p as
its i-th most preferred post. A matching M ⊆ E is a col-
lection of edges such that no two edges share an endpoint.
Let |A ∪ P| = n and |E| = m. We now define formally the
different notions of optimality.

Maximum Cardinality Pareto-Optimal Matching
A matching M is said to be Pareto-optimal if there is no
other matching M ′ such that some applicant is better off in
M ′ while no applicant is worse off in M ′ than in M (an ap-
plicant is worse of in M if it is matched to a less preferred
vertex compared to M ′) . Maximum cardinality Pareto-
optimal matchings(POM) can be computed in O(m

√
n)

time using the algorithm given by Abraham et al. (2004).

Rank-Maximal Matching
The notion of rank-maximal matchings was first introduced
by Irving under the name of greedy matchings (Irving,
2003). A rank-maximal matching is a matching in which the
number of rank one edges is maximized, subject to which
the number of rank two edges is maximized and so on. An-
other way of defining rank-maximal matchings is through
their signatures. Given that r is the largest rank across all
preference lists, we define the signature of a matching M as
an r + 1-tuple (x1, x2, · · · , xr, xr+1) where, for 1 ≤ i ≤ r,
xi represents the number of applicants matched to their i-th
preference (xr+1 denotes the number of unmatched appli-
cants).

Let (x1, x2, · · · , xr, xr+1) and (y1, y2, · · · , yr, yr+1) de-
note the signatures of M and M ′ respectively. We say that
M � M ′ w.r.t. rank-maximality if there exists an index k
with 1 ≤ k ≤ r such that for 1 ≤ i < k, xi = yi, and
xk > yk. A matching M is rank-maximal if M has the best
signature w.r.t. rank-maximality.

Through the rest of the paper, we denote this matching as
RMM. For the purposes of our experimental evaluation, we
implement a simple combinatorial algorithm (Irving et al.,
2004) to compute a rank-maximal matching. The running
time of the algorithm is O(min(C

√
n, n+C) ·m) where C

is the maximum rank of an edge in the matching.

Popular Matching
To define popularity, we translate preferences of applicants
over posts to preferences of applicants over matchings. An
applicant a prefers matching M to M ′ if either a is matched
in M and unmatched in M ′, or a is matched in both M and
M ′ but has better rank in M than in M ′. A matching M
is more popular than M ′ if the number of applicants who
prefer M to M ′ exceeds the number of applicants who prefer
M ′ to M . A matching M is popular if there is no matching
that is more popular than M .

The more popular than relation is not transitive, and it is
possible that a popular matching does not exist. Abraham et
al. (2007) describe a linear-time algorithm for strict prefer-
ences that checks for the existence of a popular matching
and computes the maximum cardinality popular matching if
it exists. When a popular matching does not exist, one can

attempt to minimize the unpopularity factor given by Mc-
Cutchen (2008). The bounded unpopularity matching algo-
rithm (Huang et al., 2011) finds a popular matching if it ex-
ists, and otherwise finds an approximation to the matching
with the least unpopularity factor. This approximation ratio
can however be as bad as O(n) in the worst case. Through
the rest of the paper, we denote the bounded unpopularity
matching as POPM.

Fair Matching
Fair matchings can be considered as complementary to rank-
maximal matchings. A fair matching is always a maximum
cardinality matching; subject to this it matches the least
number of applicants their last preferred post, subject to this,
least number of applicants to their second last preferred post
and so on. Fair matchings can be conveniently defined using
signatures.

Let (x1, x2, · · · , xr, xr+1) and (y1, y2, · · · , yr, yr+1) de-
note the signatures of two matchings M and M ′ respec-
tively. We say that M � M ′ w.r.t. fairness if there exists
a index k with 1 ≤ k ≤ r + 1 such that for k < i ≤ r + 1,
xi = yi, and xk < yk. A matching is fair if it is of maxi-
mum cardinality, and subject to that it has the best signature
according to the above defined criteria. Recently Huang et
al. (2016) gave a combinatorial algorithm to compute fair
matchings. Through the rest of the paper, we denote this
matching as FM.

AUPCR Maximizing Matching
Fair and Rank-maximal matchings are profile based match-
ings that are geared towards minimizing the tail or maxi-
mizing the head of the profile. However, optimizing for the
peripheral portions of a profile may not be necessarily rep-
resentative of a good matching in many practical settings.
This encouraged us to look into a metric called Area Under
Profile Curve Ratio (AUPCR) which in a sense seemed to
capture the entire signature of a matching.

Formulation of AUPCR
The Area Under Profile Curve Ratio (AUPCR), introduced
under the context of matchings by Diebold and Bichler
(2017) is a measure of second order stochastic dominance of
the profile. It is a useful metric that can be used to compare
multiple signatures and is very similar in nature to the highly
popular Area Under Curve of Receiver Operating Character-
istic (Hanley and McNeil, 1982).

For a matching M of a bipartite graph G(A ∪ P, E)
with ni(M) representing the number of applicants matched
to their i’th preference, AUPCR(M) is defined as the ratio
of Area Under Profile Curve (AUPC) and Total Area (TA)
where :

TA(M) = |A||P| (1)

AUPC(M) =

|P|∑
r=1

|(ai, pj) ∈M : rank(ai, pj) ≤ r|

=

|P|∑
i=1

(|P| − i+ 1)ni(M) (2)



Giving us,

AUPCR(M) =

∑|P|
i=1(|P| − i+ 1)ni(M)

|A||P|
(3)

One can visualize this quantity by considering Figure 1. For
an instance with |A| = 8, |P| = 6 and signature of matching
M given by (4, 0, 2, 1, 1, 0), the area under the shaded region
corresponds to AUPC(M ) (= 4+4+6+7+8+8 = 37) while
the area of bounding rectangle corresponds to TA(M )(= 8×
6 = 48). With these computed, AUPCR(M ) is essentially
the ratio of the two and is given by 37

48 ≈ 0.771.

Figure 1: AUPCR - Visualization

A matching that maximizes this measure can be seen as a
”softer” version of the rank-maximal matching; it does not
give up matching low ranked edges entirely in order to match
a large number of high ranked edges. Based on this we con-
sider two problems :
• AUPCR Maximizing Matching - the problem of finding

a matching which maximizes the AUPCR metric. We de-
note such a matching as AMM.

• Max Cardinality AMM - the problem of finding a match-
ing with the maximum cardinality among all matchings
with maximum AUPCR. We denote such a matching as
MC-AMM.
In this paper, we formulate algorithms to address the

above defined problems and show that the AUPCR maximiz-
ing matching performs favourably on a variety of other stan-
dard metrics typically used to compare matchings in practi-
cal settings.

Algorithm - AUPCR Maximizing Matching
The problem of finding an AUPCR maximizing match-
ing can be reduced to the problem of finding a maximum
weighted perfect matching. Given a bipartite graph G(A ∪
P, E) and a weight we for each edge e ∈ E, we define
the weight of a matching as w(M) =

∑
e∈E we. Then the

maximum weighted perfect matching problem is to find a
matching M which matches all vertices inA (M is a perfect
matching) and maximizes w(M).

Given a bipartite graph G(A ∪ P, E) with edges repre-
senting preferences of A (as described in the Preliminaries
section), we construct G′(A′ ∪ P ′, E′) as follows:

1. A′ = A1∪P2 andP ′ = P1∪A2 whereA1,A2 are copies
of A and P1,P2 are copies of P .

2. For each edge e ∈ E of rank i, add edge between corre-
sponding vertices of A1 and P1 with weight |P| − i+ 1.
Similarly, add an edge between A2 and P2 with the same
weight.

3. Add edges with weight 0 from vertices in A1 to their
copies in A2. Add similar edges between P1 and P2. We
refer to these edges as identity edges.

Proof of Correctness
Claim. If M is a max weighted perfect matching in G′, then
M restricted to A1 ∪ P1 is a AMM in G.

Proof. Let M1 and M2 be the matchings obtained by re-
stricting M toA1 ∪P1 andA2 ∪P2 respectively, excluding
the identity edges in both cases. Since M is a perfect match-
ing, if a vertex in A1 ∪ P1 is not matched in M1, it must be
matched to its copy in A2 ∪ P2 via the identity edge. This
means that its copy is also unmatched in M2. This means
that M1 and M2 match the same set of vertices. Since the
identity edges have 0 weight,

w(M) = w(M1) + w(M2)

Since M1 and M2 match the same set of vertices, one
can copy the edges matched in M1 to A2 ∪ P2. This means
that w(M1) = w(M2) and w(M) = 2w(M1). Maximizing
w(M) is equivalent to maximizing w(M1).

We also have

w(M1) =
∑
e∈M1

we =
∑
e∈M1

|P| − re + 1

=

|P|∑
i=1

ni(|P| − i+ 1) = |A||P|AUPCR(M1)

where re is the rank of edge e and ni is the number of edges
of M1 with rank i.This means that maximizing w(M1) max-
imizes AUPCR(M1).

Hence, if M is a maximum weight perfect matching in
G′, M1 is a max AUPCR matching in G.

Algorithm - Max Cardinality AMM
The problem of finding a Max Cardinality AMM can also be
reduced to an instance of max weighted perfect matching.
The reduction is the same as the max AUPCR case, expect
that we add a negative weight of − 1

|A|+|P| to the identity
edges going from A1 to A2 in the graph G′.

Proof of Correctness
Claim. If M is a max weighted perfect matching in G′, then
M restricted to A1 ∪ P1 is a Max Cardinality AMM in G.

Proof. As before, we can prove that w(M1) = w(M2).
However, w(M) = w(M1)+w(M2)+w(I) where I is the
set of identity edges in M . If M1 leaves kA vertices in A1

and kP vertices in P1 unmatched, then M2 also leaves the
same vertices unmatched. So, we have 2(kA + kP) identity
edges in I and hence

w(I) = −2 kA + kP
|A|+ |P|



Since kA + kP < |A|+ |P|, we have −2 < w(I) ≤ 0 and

2(w(M1)− 1) < w(M) ≤ 2w(M1)

Let M ′
1 be a max AUPCR matching on A1 ∪ P1, and M ′

be its extension to G′ by copying edges and adding identity
edges to match the remaining vertices. Since M is a maxi-
mum weighted perfect matching, w(M ′) ≤ w(M) and so

2(w(M ′
1)− 1) < 2w(M1)

⇒w(M ′
1)− w(M1) < 1

⇒|A||P|AUPCR(M ′
1)− |A||P|AUPCR(M1) < 1

⇒AUPCR(M ′
1)− AUPCR(M1) <

1

|A||P|

From the definition of AUPCR, we can see that if two match-
ings have different AUPCR, then the difference is ≥ 1

|A||P| .
So, M ′

1 and M1 have the same AUPCR, which means that
M1 is an AUPCR maximizing matching in G.

The cardinality of M1 is |M1| = |A| − kA = |P| − kP .
Writing w(M) in terms of |M1|,

w(M) = 2w(M1)−
|A|+ |P| − 2|M1|
|A|+ |P|

All AUPCR maximizing matchings will have the same
w(M1), which means that maximizing w(M) maximizes
|M1|. So, M1 is a maximum cardinality AUPCR maximiz-
ing matching in G.

The time complexity of the algorithm to find maximum
weighted matching presented is O(m

√
n log n) (Duan and

Su, 2012). Since both our algorithms construct a graph with
2n vertices and 2m + n edges and find a max weighted
matching, the time complexity for finding both AMM and
MC-AMM would be O((m + n)

√
n log n). A comparison

of the run-time complexities is presented in Table 1.

Algorithm Running Time

POM (Abraham et al., 2004) O(m
√
n)

RMM (Irving et al., 2004) O(min(C
√
n, n+ C)m)

FM (Huang et al., 2016) O(Cm
√
n logn)

POPM (Huang et al., 2011) O(m
√
n)

AMM, MC-AMM (Our work) O((m+ n)
√
n logn)

Table 1: C is the maximum rank of any edge in the matching,
n = |A|+ |P | and m = |E|

Understanding AMM
The formulation of AMMs lead us to explore some interest-
ing questions.

Is an AMM Pareto-optimal?
Yes, AMM is a Pareto-optimal matching.

Theorem. AUPCR maximizing matching is Pareto-optimal.

Proof. Assume on the contrary that an AUPCR maximizing
matching M is not Pareto-optimal. This means there exists

a matching M ′ where every applicant in M ′ is at least as
well off as in M and at least one applicant in M ′ is better
off than M . Consider a vertex v ∈ A. Let rM (v) be the rank
of the post that v is matched to (rM (v) = |P| + 1 if v is
unmatched), and rM ′(v) be defined analogously.

AUPCR(M ′)−AUPCR(M)

=
∑
v∈A

((P − rM ′(v) + 1)− (P − rM (v) + 1))

=
∑
v∈A

(rM ′(v)− rM (v))

> 0

The last inequality follows from the fact that every term of
the summation is non negative and at least one term is posi-
tive by our assumption that M is not Pareto-optimal.
Since AUPCR(M ′) - AUPCR(M ) > 0, M is not an AUCPR
maximizing matching, a contradiction, and so M must be
Pareto-optimal.

Is an AMM always a maximum cardinality matching?
An AMM need not always be a maximum cardinality match-
ing. Consider the instance with A = {a1, a2, a3, a4}, P =
{b1, b2, b3, b4} and the preferences given by

a1 : (b1, 1)

a2 : (b1, 1), (b2, 2)

a3 : (b2, 1), (b1, 2), (b3, 3)

a4 : (b3, 1), (b1, 2), (b4, 3)

As shown in Figure 2 and Figure 3, for this instance, AMM
has a cardinality of 3 while a maximum cardinality matching
has a cardinality of 4.

Figure 2: AUPCR Maximizing Matching

Do all AMMs have the same cardinality?
All AMMs need not have the same cardinality. Consider the
instance with A = {a1, ...a6} and P = {b1, ...b6} and the
preferences given by

a1 : (b6, 1), (b3, 2), (b1, 3)

a2 : (b2, 1), (b3, 2), (b1, 3)

a3 : (b4, 1), (b5, 2), (b2, 3)

a4 : (b1, 1), (b4, 2), (b6, 3)

a5 : (b5, 1), (b2, 2), (b1, 3)

a6 : (b4, 1), (b2, 2), (b5, 3)



Figure 3: Maximum Cardinality Matching

As shown in Figure 4 and Figure 5, both are AUPCR max-
imizing matchings, with an AUPCR of 0.833, but they have
different cardinalities. This example also shows that multi-
ple AMMs can exist for a given instance.

Figure 4: An AMM with |M | = 5

Experiments
To compare AMMs with other matchings, we consider a
set of the evaluation metrics which we believe character-
izes preference matchings and are of importance in practice.
Some of these choices are inspired from the work of Michail
(2011).

Evaluation Metrics
The matchings obtained from each algorithm are evaluated
with respect to the following metrics.

• Cardinality: Number of edges present in the matching.

• Unpopularity measure: The unpopularity measure
u(M,M ′) measures how far away a matching M is from
a popular(least unpopular) matching M ′. Let p(M1,M2)
be the number of applicants that prefer M1 over M2.
Then u(M,M ′) for matching M is defined as the ratio of
p(M ′,M)− p(M,M ′) to the total number of applicants.

• Rank 1: The number of matched rank 1 edges

Figure 5: An AMM with |M | = 6

• AUPCR: The AUPCR metric is second order stochastic
dominance of the profile as defined in Equation 3.

• Ranks less than half the preference list size (RHPL):
This counts the number of applicants who have been
matched to a post with a rank better than or equal to half
the length of their preference list.

• Average rank: For a matching M , this is the average
rank of all matched edges. Although this is similar to the
AUPCR metric, the average rank is computed only over
the matched edges while AUPCR accounts for unmatched
edges.

• Worst rank: For a matching M , this is the highest (worst)
rank among all matched edges in M .

Instances
For our experiments, we consider two structured instance
generators, Highly Correlated and Uniform Random. These
generators are identical in nature to those given by Michail
(2011), but we consider only instances with strict prefer-
ence lists. Though all the algorithms described above (ex-
cept Maximum Cardinality Pareto-Optimal) can also handle
instances with ties, we went with this choice to have a set of
instances upon which all the algorithms could be compared
and analyzed. This choice is not too restrictive as in practical
scenarios preference lists are often strict and devoid of ties.

Uniform Random (UNI) UNI instances are parameter-
ized by a density d with 0 ≤ d ≤ 1. Every applicant has
a preference list size of l = b|P| · dc. These preference
lists are chosen uniformly at random from the set of per-
mutations of l posts. Let an applicant a’s adjacency list be
(p1, p2, ..., pl). Then p1 is ranked 1 by a, p2 is ranked 2, and
so on.

Highly Correlated (HC) These instances are generated
based on a global preference ordering(say pg) for the set
of posts; one that all the applicants agree upon. Similar to
UNI, a HC instance is also parameterized by a density d with
0 ≤ d ≤ 1. For every vertex pair (u, v) with u ∈ A, v ∈ P ,



an edge (u, v) is added with a probability d. Once the graph
has been constructed, the applicants rank the posts as per the
global preference list: the best post, as per pg , an applicant
is connected to is assigned rank 1, and so on. Unlike UNI,
preference list need not have identical lengths across all ap-
plicants.

Experimental Setup
The number of applicants are equal to the number of posts
in any graph and is varied from 50 to 900 in steps of 50. Or-
thogonally, the density parameter d for HC and UNI is varied
from 0.02 to 0.20 in steps 0.02. The reason for this choice of
range is that real world datasets are not very dense in nature.
Each instance is averaged over 50 random seeds. There ex-
ists one more level of averaging across different density (d)
values to get one value for each metric for each problem size
(number of applicants).

The variant of Max AUPCR that does not not enforce
maximum cardinality is used. Surprisingly this still yields
a max cardinality matching without exception. For POPM,
in cases where popular matchings do not exist, the least un-
popular matching is utilized. The code was executed using
the Amazon web services (AWS) based EC2 service on a
t2.micro instance (1 GB Ram, 1 CPU, Intel Xeon proces-
sor).

In general, POP, RMM, POPM, FM and AMM are not
unique and the reported results are for the matchings ob-
tained by the respective algorithms.

Experimental Results

POM RMM POPM FM AMM

Card. 1.00 2.94 2.00 1.00 1.00
Unpop. 5.00 2.00 1.00 3.99 3.01
Rank 1 3.80 1.00 1.00 3.18 2.00
AUPCR 3.81 4.85 3.28 1.99 1.00
RHPL 4.28 2.89 2.58 1.26 1.14
Avg Rank 4.98 2.58 3.81 2.34 1.22
Worst Rank 4.66 3.27 3.39 1.00 1.94

Rank Mean 3.93 2.79 2.44 2.11 1.62

Table 2: Rank means of algorithms on metrics for UNI

Comparing matchings based on rank means
In this analysis, for a given metric and graph instance, we
rank the algorithms in terms of performance with the best
one getting a rank of 1 and worst one getting a rank of 5.
We then average this rank across all instances and this value
corresponds to an entry in Table 2. The rank mean is com-
puted by taking the average of the entries along the column.
This value is intended to serve as a measure of overall per-
formance.

As seen from the table, each chosen metric has a sub-
set of the algorithms performing best. It is however impor-
tant to note that AMM performs competitively in almost

POM RMM POPM FM AMM

Card. 1.00 2.89 2.11 1.00 1.00
Unpop. 5.00 3.07 1.00 3.94 2.00
Rank 1 4.93 1.00 1.59 2.99 3.96
AUPCR 3.25 4.84 3.92 2.00 1.00
RHPL 4.09 1.96 3.02 4.75 1.11
Avg Rank 5.00 2.18 3.53 3.20 1.09
Worst Rank 3.66 4.73 3.42 1.01 1.99

Rank Mean 3.84 2.95 2.66 2.69 1.73

Table 3: Rank means of algorithms on metrics for HC

all metrics. This observation is also qualitatively supported
from the fact that the rank mean attained by AMM is lowest
among all algorithms for both UNI and HC instances. This
empirically shows that AMM is able to achieve a much de-
sired balance, making it a very compelling choice for many
practical preference matching problems.

A graphical comparison for some of these metrics can be
found in Figure 6 and Figure 7.

Observations
Some interesting observations we made are as follows :

• Cardinality : As expected, POM and FM have the
largest cardinality since they compute maximum cardinal-
ity matchings. However, it was observed that AMM with-
out exception returned a maximum cardinality matching.
While this may not universally true (as proved in conse-
quent section) this is a useful property in practice.

• RHPL : The RHPL is one metric that no matching in par-
ticular optimizes for. It is peculiar to note that AUPCR
maximizes this metric indicating that it is indeed a more
general notion of optimality.

• Rank 1 : It was observed that both popular and rank-
maximal matchings have similar if not same number of
rank 1 edges. While the head of the signature is maxi-
mized, it is observed that both these matchings display
poor performances on metrics that account for the entirety
or the tail of the signature.

• Time : Dictated by the computational time complexities
of the respective algorithms, the times were vastly differ-
ent for FM and AMM compared to the other three match-
ings. In graphs with 900 vertices (in each partition), the
FM took 512.45 seconds, AMM executed in 204.78 sec-
onds while POPM and POM were executed in less than 5
seconds.

Observing Table 2 and Table 3, one question which comes
to mind is

Is an AMM always more ”rank-maximal” than a FM?
No, an AMM matching may not always be more
rank-maximal than the fair matching. Consider the in-
stance with A = {a1, a2, a3, a4, a5, a6, a7}, P =



(a) AUPCR (b) Avg Rank (c) Popularity (d) Rank 1

Figure 6: Uniform Random

(a) AUPCR (b) Avg Rank (c) Popularity (d) Rank 1

Figure 7: Highly Correlated

{b1, b2, b3, b4, b5, b6, b7} and the preferences given by

a1 : (b1, 1)

a2 : (b2, 1)

a3 : (b3, 1), (b4, 2),

a4 : (b1, 1), (b5, 2), (b4, 3)

a5 : (b1, 1), (b6, 2), (b2, 3), (b5, 4)

a6 : (b1, 1), (b2, 2), (b7, 3), (b6, 4), (b3, 5)

a7 : (b7, 1)

An AMM matching for the above graph is as show in Figure
8 and its signature is given by (3, 3, 0, 0, 1). One can easily
see that the FM shown in Figure 9 is more rank-maximal
with a signature (4, 0, 1, 2, 0).

Figure 8: An AMM with matching with signature
(3, 3, 0, 0, 1)

Figure 9: A Fair matching with signature (4, 0, 1, 2, 0)

Conclusion
In this work, we introduce the notion of an AUPCR maxi-
mizing matching. We describe two variants with one max-
imizing the AUPCR, and the other maximizing the cardi-
nality subject to maximizing the AUPCR. We empirically
evaluate our algorithm on standard synthetically generated
datasets and highlight that AUPCR maximizing matchings
achieve this much needed middle-ground with respect to
the different notions of optimality. The overall performance
of the AUPCR matching is superior in comparison to other
matchings when all metrics are cumulatively used for com-
parison. Extending AUPCR matchings and finding algo-
rithms with reduced time complexity is left as future work.
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