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Abstract

If voters’ preferences are one-dimensional, many hard prob-
lems in computational social choice become tractable. A pref-
erence profile can be classified as one-dimensional if it has the
single-crossing property, which requires that the voters can be
ordered from left to right so that their preferences are consis-
tent with this order. In practice, preferences may exhibit some
one-dimensional structure, despite not being single-crossing
in the formal sense. Hence, we ask whether one can identify
preference profiles that are close to being single-crossing. We
consider three distance measures, which are based on parti-
tioning voters or candidates or performing a small number of
swaps in each vote. We prove that it can be efficiently decided
if voters can be split into two single-crossing groups. Also,
for every fixed k > 1 we can decide in polynomial time if
a profile can be made single-crossing by performing at most
k candidate swaps per vote. In contrast, for each k > 3 it is
NP-complete to decide whether candidates can be partitioned
into k sets so that the restriction of the input profile to each set
is single-crossing.

1 Introduction
There is a growing body of literature in computational social
choice that aims to identify notions of structure in collective
preferences, and to provide efficient algorithms for recog-
nising structured preferences; see a recent survey by Elkind,
Lackner, and Peters (2017). By discovering structural proper-
ties of a preference profile we obtain an explanatory model
of voters’ behavior. Often such models allow us to solve pref-
erence aggregation and elicitation problems more efficiently.
This is particularly important in the context of multiwinner
voting: while multiwinner voting rules are useful in a variety
of applications ranging from group recommendation systems
and design of marketing campaigns to parliamentary elec-
tions, and have attracted intense interest in recent years (see
Faliszewski et al. 2017), for many appealing multiwinner
rules the winner determination problem is computationally
hard (Lu and Boutilier 2011; Aziz et al. 2015; Skowron, Fal-
iszewski, and Lang 2016). Thus, it is important to identify
natural subdomains where winning sets can be computed
efficiently. The approach based on structured preferences
has been very successful in this setting, with a number of
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distance metric single-peaked single-crossing

voter deletion NP-complete a,b in P b

alternative deletion in P a NP-complete b

voter partition NP-complete a in P for k = 2
alternative partition open NP-complete
local swaps NP-complete a in XP wrt k

Table 1: Overview of the complexity of deciding whether a
profile is close to being structured. Bold results are new.
a proved by Erdélyi, Lackner, and Pfandler (2017).
b proved by Bredereck, Chen, and Woeginger (2016).

polynomial-time algorithms proposed for several rules and
various notions of structure (Betzler, Slinko, and Uhlmann
2013; Skowron et al. 2015; Yu, Chan, and Elkind 2013;
Clearwater, Puppe, and Slinko 2015; Peters and Elkind 2016;
Peters and Lackner 2017).

The two best-known types of structured preferences are
single-peaked preferences (Black 1948; Arrow 1951) and
single-crossing preferences (Inada 1964; Mirrlees 1971;
Roberts 1977). Informally, the former notion is based on
ordering the candidates along a one-dimensional axis, while
the latter notion is based on ordering the voters from left to
right; in both cases, the voters’ preferences are required to be
consistent with this ordering. In particular, single-crossing
preferences arise when voters’ opinions depend only on a
single one-dimensional type or parameter. For example, in
political elections, this parameter may be the position of
the voter on the left-to-right ideological spectrum (if candi-
dates, too, can be positioned on this spectrum, the voters’
preferences will be single-peaked, in addition to being single-
crossing, but single-crossing preferences may arise even if
this is not the case). Similarly, when voters choose among
several policies, the policy space may be complicated and
not obviously one-dimensional, but the voter’s preferences
could still be explainable by a single parameter (such as their
position on how to deal with a trade-off). The economics
literature considers many such scenarios, including taxation,
coalition formation, public goods, and education markets
(see Saporiti 2009).

Profiles that are single-peaked or single-crossing have
many attractive properties: for instance, for both domains it



holds that the majority preferences are transitive, and there
is a strategyproof preference aggregation rule. Also, the
membership in either of these domains can be efficiently
tested, and both domains admit polynomial-time algorithms
for problems that are hard for general preferences (see Elkind,
Lackner, and Peters 2017).

However, these notions of structure are not robust: even the
addition of a single ‘misbehaving’ voter to a structured profile
can make it non-structured. Further, they are restrictive in that
only an exponentially small fraction of all preference profiles
belongs to one of these domains (Lackner and Lackner 2017).
Indeed, most preference profiles elicited in the real world
are unlikely to belong to either of these domains: none of
the profiles in the PrefLib library (Mattei and Walsh 2013) is
single-peaked or single-crossing.

Nevertheless, voters’ preferences are often driven by con-
siderations that are essentially single-dimensional (consider,
e.g., voting over tax rates), and in such cases we expect the
preferences to be ‘nearly’ structured. For instance, it may be
the case that a profile can be made single-peaked or single-
crossing by swapping a few pairs of adjacent candidates in
each vote, ignoring a small number of ‘irrational’ voters or
‘unconventional’ candidates, or splitting the voters in a few
groups so that within each group the preferences have the
desired structure. Such ‘nearly structured’ preferences may
inherit some of the attractive computational properties of the
original domain. Nearly structured preferences have been
explored in a number of recent papers (Faliszewski, Hemas-
paandra, and Hemaspaandra 2014; Cornaz, Galand, and Span-
jaard 2012; 2013; Bredereck, Chen, and Woeginger 2016;
Erdélyi, Lackner, and Pfandler 2017), which introduced sev-
eral distance measures capturing how ‘close’ a given profile
is to being structured, studied the complexity of computing
such distances, and proposed algorithms for social choice
problems that are hard for general preferences for instances
from ‘nearly structured’ domains.

In particular, these papers argue that, for nearly structured
domains to be algorithmically useful, they need to admit effi-
cient recognition algorithms. To address this challenge, Erdé-
lyi, Lackner, and Pfandler (2017) put forward an extensive
list of distance measures, and show that, for almost all dis-
tances on their list, it is NP-hard to compute how far a given
profile is from being single-peaked. In contrast, for the single-
crossing domain the picture is far from complete: Bredereck,
Chen, and Woeginger (2016) provide a hardness result for
candidate deletion and a polynomial-time algorithm for voter
deletion, and Cornaz, Galand, and Spanjaard (2012; 2013)
provide positive algorithmic results for a measure they call
the single-peaked/single-crossing width, but for many dis-
tance measures introduced by Erdélyi, Lackner, and Pfandler
(2017) the complexity of deciding if a given profile is close
to being single-crossing remains open.

Our contribution. We study profiles that are almost single-
crossing in three different senses:

• Voter partition. We ask whether the input profile can be
partitioned into k single-crossing subprofiles, i.e., whether
the electorate can be subdivided into few sub-communities
each of which is well-structured. We solve this problem

for k = 2 by reducing it to 2SAT.
• Local swaps. We ask whether the input profile can be made

single-crossing by making at most k swaps of adjacent
alternatives in the preferences of each voter, i.e., whether
it can be the case that the input profile fails to be single-
crossing simply because voters made small ‘errors’ when
reporting their preferences. We show that this problem
is in XP with respect to k, i.e., for each fixed k we can
answer this question in polynomial time.
• Alternative partition. We ask whether the set of alterna-

tives can be partitioned into k subsets A = A1 ∪ · · · ∪ Ak

so that the restriction of the input profile to each subset
is single-crossing. We show that this problem is NP-hard
for every fixed k > 3, by providing a reduction from the
k-colouring problem.

Our results are summarised in Table 1.

2 Preliminaries
Let A be a finite set of m alternatives, or candidates, and
let N = {1, . . . ,n} be a set of n voters; each voter i is asso-
ciated with a strict total order vi over A, which we call vi’s
preference order. If alternative a is ranked above alternative
b in a strict total order v, we write a �v b. The collection
P = (v1, . . . ,vn ) is called a preference profile. Given a sub-
set A′ of A, we write P[A′] to denote a profile (u1, . . . ,un )
of strict linear orders over A′ such that for each i ∈ [n]
and all a,b ∈ A′ we have a �ui b if and only if a �vi b;
we refer to P[A′] as the restriction of P to A′. We write
Nab = {i ∈ N : a �vi b} to denote the set of voters who
prefer a to b.
Definition. Let L be a linear order over the set N of voters.
We say that P is single-crossing with respect to L if for all
pairs a,b ∈ A of alternatives, the sets Nab and Nba are
intervals of L.
Thus, as we move along L from left to right, we observe
that the voters’ preferences over a and b ‘cross’ at most
once. We say that a profile P is single-crossing if there exists
some linear order L over N such that P is single-crossing
with respect to L. We also say that P = (v1, . . . ,vn ) is single-
crossing in the given order if P is single-crossing with respect
to the order L given by 1 < 2 < · · · < n. Figure 1 shows an
example of a single-crossing profile.

v1 v2 v3 v4 v5

a b b d d
b a d b c
c d a c b
d c c a a

Figure 1: A preference profile that is single-crossing with
respect to the voter ordering 1 < 2 < 3 < 4 < 5. The
‘trajectories’ of any two alternatives cross at most once.

We now introduce an alternative way of looking at single-
crossing preferences, and present a method to decide whether
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a given profile is single-crossing. Given two linear orders u
and v, we define the conflict set ∆(u,v) to be the set of pairs
of alternatives on which u and v disagree:

∆(u,v) = {{a,b} ⊆ A : a �u b and b �v a}.

The Kendall-tau distance between u and v is then defined as
d(u,v) = |∆(u,v) |.

Consider a profile P = (v1, . . . ,vn ) that is single-crossing
in the given order. Then, as i grows from 1 to n, the number
of conflicts between v1 and vi increases with each crossing.
Thus, we have

∅ = ∆(v1,v1) ⊆ ∆(v1,v2) ⊆ · · · ⊆ ∆(v1,vn ). (1)

Clearly, the converse is also true: If (1) holds, then P is
single-crossing in the given order. For example, in Figure 1,
we have

∆(v1,v2) = {ab,cd},
∆(v1,v3) = {ab,cd,ad},
∆(v1,v4) = {ab,cd,ad,bd,ac},
∆(v1,v5) = {ab,cd,ad,bd,ac,bc},

and these sets form a chain with respect to ⊆.
Given a profile P and a voter i, we say that P is single-

crossing with first voter i if P is single-crossing with re-
spect to an ordering L in which i is the first (leftmost) voter.
Then (1) implies the following characterisation.
Proposition 1. A profile P = (v1, . . . ,vn ) is single-crossing
with first voter i if and only if for all pairs of voters j, k either
∆(vi ,v j ) ⊆ ∆(vi ,vk ) or ∆(vi ,vk ) ⊆ ∆(vi ,v j ).

The condition formulated in Proposition 1 is easy to check.
Thus, fixing the first voter substantially simplifies the task
of finding an ordering L such that P is single-crossing with
respect to L. In particular, using this characterisation, we
can decide in polynomial time whether a given profile P is
single-crossing.
Proposition 2. We can decide whether a given profile is
single-crossing in time O(n3m2).

Proof. Guess the first voter i, compute the sets ∆(vi ,v j ), and
check if they form a chain with respect to ⊆. �

This basic algorithm can be optimised in various ways,
leading to faster runtimes. For instance, one can work with
the Kendall-tau distances d(vi ,v j ) rather than the conflict sets
(see, e.g., Doignon and Falmagne 1994; Elkind, Faliszewski,
and Slinko 2012). Our algorithms for detecting nearly single-
crossing profiles, however, build on this simple template
based on conflict sets.

Another corollary to Proposition 1 is that, in order for a
profile P to be single-crossing with first voter i, the distances
d(vi ,v j ), v j ∈ P, must be pairwise distinct.

3 Voter Partition
Arguably, if a preference profile is single-crossing, then there
is a form of consensus among the voters: while individuals
may have very different preferences, there is a common un-
derstanding of what the underlying issue space is, and how

different positions in this issue space translate into preference
rankings (List et al. 2012 make a similar argument in the
context of single-peaked preferences). However, it may also
happen that, while there is no common agreement over the
issue space, voters can be split into a few disjoint groups so
that each group shares the same perspective on issues and,
consequently, each group has single-crossing preferences.

This is the underlying idea of the voter partition metric,
which will be considered in this section. Formally, we ask if
we can partition N into k subsets, N = N1 ∪ N2 ∪ · · · ∪ Nk ,
so that for each j ∈ [k] the subprofile P j = (vi )i∈N j is
single-crossing. Certainly, the answer is ‘yes’ if k is large
enough: e.g., every two-voter profile is single-crossing, so
for k > |N |/2 the answer is positive. But given our original
motivation, we are particularly interested in solving this prob-
lem for small values of k. An example of a profile where the
answer is ‘yes’ for k = 2 is shown in Figure 2.

We note that voter partition is related to voter deletion,
where we look for a maximum-cardinality subset N ′ of N
such that the profile P′ = (vi )i∈N ′ is single-crossing; in
contrast, in the voter partition problem we want both P′ and
P \ P′ to be single-crossing.

v1 v2 v3 v4 v5 v6

a a d b d a
b c c c a d
c d b d b c
d b a a c b

Figure 2: A preference profile that can be partitioned into
two single crossing profiles, {v1,v2,v3} and {v4,v5,v6}.

The main result of this section is a polynomial-time al-
gorithm for the voter partition problem with k = 2. Our
algorithm proceeds by creating and solving several instances
of 2SAT, and uses the characterisation of single-crossing
preferences with a fixed first voter from Proposition 1.
Theorem 3. Given a profile P with n voters and m alterna-
tives, we can decide in time O(n4m2) whether the voter set
N can be partitioned as N = N1 ∪ N2 so that both profiles
P1 = (vi )i∈N 1 and P2 = (vi )i∈N 2 are single-crossing.

Proof. As a first step, we guess two voters i, ` ∈ N , i , `,
and let s1 = vi , s2 = v` . We then check whether there
is a partition P = P1 ∪ P2 such that for j = 1,2 it holds
that s j ∈ N j and P j is single-crossing with first vote s j .
We perform this check by a reduction to 2SAT, the problem
of deciding if a formula of propositional logic in 2-CNF is
satisfiable. 2SAT is known to be solvable in linear time (see,
e.g., Papadimitriou 1993).

To construct this formula, we introduce one variable zv
for each vote v ∈ P. Intuitively, an assignment α to these
variables corresponds to a partition of P into subprofiles

P1 = {v : α(zv ) = true} and P2 = {v : α(zv ) = false}. (2)
We now introduce clauses that force each of the profiles P j ,
j = 1,2, to be single-crossing with first vote s j . Given two
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sets A and B, we write A ‖ B if A and B are incomparable
under ⊆, i.e., A * B and B * A. For each j = 1,2 and every
pair of votes x, y ∈ P j the sets ∆(s j , x) and ∆(s j , y) must
be comparable under ⊆, i.e., ∆(s j , x) ∦ ∆(s j , y). That is,
if ∆(s j , x) ‖ ∆(s j , y) for some j = 1,2, then votes x and y
cannot both belong to P j . Hence our condition is captured
by the following 2-CNF formula:

ϕs
1,s2
≡

∧
x,y∈P

∆(s1,x) ‖∆(s1,y)

(¬zx ∨ ¬zy ) ∧
∧

x,y∈N

∆(s2,x) ‖∆(s2,y)

(zx ∨ zy ). (3)

If formula (3) is not satisfiable, there is no partition of P
into two single-crossing profiles with s1 and s2 as first votes.
Conversely, a satisfying assignment α can be converted into
a partition via (2).

Formula (3) has n variables and O(n2) clauses, and can
be constructed in O(n2m2) time. Since 2SAT can be solved
in linear time, we can decide whether (3) can be satisfied in
time O(n2). As we consider up to

(
n
2

)
different formulas, the

overall runtime of this algorithm is O(n4m2). �

The proof of Theorem 3 does not extend to k = 3, since
the reduction to SAT would yield clauses with three literals.
We leave the complexity of voter partition with k > 3 open.
This problem seems structurally similar to the problem of 3-
colouring a graph formed by a union of three incomparability
graphs. However, existing results on incomparability graphs
(see, e.g., Bosek, Krawczyk, and Matecki 2013) do not seem
to be directly applicable to our problem.

We note that for the case of single-peaked preferences,
voter partition is known to be NP-hard for each k > 3, but
the case k = 2 is open (Erdélyi, Lackner, and Pfandler 2017).

4 Local Swaps
We now consider the local swaps distance, where we have a
budget of k swaps per vote: for each voter, we may (succes-
sively) perform k swaps of two candidates that are adjacent
in the vote, with the aim of making the profile single-crossing.
A swap of adjacent candidates is, in some sense, a minimal
change of a preference order, so this distance corresponds to
fine-grained perturbations of the input profile.

Figure 3 shows an example of a profile that can be made
single-crossing by performing a single swap per voter. Note
that the original version of the profile on the left looks rather
chaotic, whereas the perturbed version on the right is visibly
structured. If we are in a setting where we expect the true
profile to be single-crossing, but we observe the profile in the
left part of Figure 3, we may well come to the conclusion that
there have been errors in the process of eliciting the voters’
preferences, and that the perturbed profile is closer to the
truth.

As in the previous section, our aim is to decide whether we
can make a profile single-crossing by using at most k swaps
per vote. Note that even the case k = 1 is not trivial: a naive
brute-force search requires considering (m−1)n possibilities.
However, we show that for k = 1 this problem can be solved
in polynomial time. In fact, we obtain a stronger result: our
problem can be solved in polynomial time for every fixed k,
though the exponent in the runtime may depend on k. This

v1 v2 v3 v4 v5 v6

a d a a b f

b a d d d c
c b b f a d

d c e b f b

f e c c c a

e f f e e e

7→

v1 v2 v3 v4 v5 v6

a a a a d f

b d d d b d
c b b b a c

d c c f f b

e e e c c a

f f f e e e

Figure 3: A profile that becomes single-crossing after we
swap a single pair of adjacent candidates in each vote.

places our problem in the parameterised complexity class XP
with respect to k.

Our algorithm proceeds by splitting the profile into several
pieces. Then for each piece we enumerate all ways in which
that piece can be made single-crossing by using at most k
swaps per voter. Finally, we use dynamic programming to
find a way to combine the results for individual pieces.

Theorem 4. Given a profile P with n voters and m alter-
natives, we can decide in time O((nm)8k3+2k2

poly(n,m))
whether P can be made single-crossing by making at most k
swaps in the preferences of each voter.

Proof. Note that if P contains multiple copies of some prefer-
ence order, we can remove all but one copy without changing
the answer to our question. Thus, in what follows we can
treat P as a set of (distinct) preference orders. Recall that
the Kendall-tau distance d(vi ,v j ) between two preference
orders is the number of pairs on which they disagree. Given
a set P = {v1, . . . ,vq } of preference orders, we say that a set
P′ = {u1, . . . ,ur } is a k-variant of P if for each i ∈ [q] there
is a j ∈ [r] such that d(vi ,u j ) 6 k and for each j ∈ [r] there
is an i ∈ [q] such that d(vi ,u j ) 6 k; note that we may have
q , r. Thus, a profile is obtainable from P by performing
k local swaps if and only if it is a k-variant. We can now
formalise our question as follows: is there a k-variant P′ of
P that is single-crossing?

Throughout our analysis of the problem, we will fix the
number k of allowed swaps per vote. Thus, ‘polynomial size’
and ‘polynomial time’ refer to values that are polynomial for
constant k, that is, to values bounded by (nm) f (k ) for some
function f .

Let P be the input profile, interpreted as a set of linear
orders. The first step in our algorithm is to guess which
voter will appear first in the order of voters witnessing that
the target profile P′ is single-crossing. We implement this
guessing by iterating through all preference orders v ∈ P,
and iterating through all possibilities of applying at most k
swaps to v, yielding s. There are O(nmk ) possibilities for
this. Having guessed the starting voter, we have to check
whether P is within k local swaps from being single-crossing
with first voter s.

We now partition P into blocks based on the distance to s.
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For each r = 1, . . . ,
(
m
2

)
, let

Pr := {vi ∈ P : d(s,vi ) = r }

be the set of preference orders at distance exactly r from s.
At first we will handle each Pr separately, by enumerating
all promising ways of applying k swaps to the orders in Pr .
To this end, let Bk (Pr ) denote the set of all k-variants P′r of
Pr such that P′r ∪ {s} is single-crossing with first vote s.

Lemma 5. The set Bk (Pr ) is of polynomial size and can be
enumerated in polynomial time.

Proof. Consider a set P′r ∈ Bk (Pr ). We have d(s,v) ∈
[r − k,r + k] for each v ∈ P′r . For P′r to be single-crossing
with first vote s, the votes in P′r must be at pairwise different
distances from s. Thus, for each d ∈ [r − k,r + k], there is at
most one preference order v in P′r with d(s,v) = d. Hence
|P′r | 6 2k + 1.

It follows that P′r is a k-variant of some subset P∗r ⊆ Pr

of size at most 2k + 1. Thus, to enumerate Bk (Pr ), we can
enumerate all O(|Pr |

2k+1) subsets P∗r ⊆ Pr of size at most
2k + 1, then, for each P∗r , enumerate all O((mk )2k+1) k-vari-
ants of P∗r , and finally cross out all sets that are not k-variants
of Pr or are not single-crossing with first voter s. �

The procedure described in Lemma 5 is rather inefficient
even for relatively small k. For the case k = 1, we can show
that Bk (Pr ) can be enumerated in time linear in m. We omit
the proof due to space constraints.

Having enumerated all potential k-variants for each Pr

separately, we now need a way to decide whether there is a
way to combine them into a single-crossing profile. Note that
in this profile votes from different sets P′r may be interleaved,
which makes our problem more difficult. Nevertheless, we
will now argue that it can be reduced to the problem of finding
a path of a certain length in the directed acyclic graph that
we will now construct.

Let Pr1 , . . . ,Prq be a list of all non-empty sets Pr , where
r1 < · · · < rq . For each i = 1, . . . ,q − 4k + 1, let

Cri := {(P′ri , . . . ,P
′
ri+4k−1

) ∈ Bk (Pri ) × · · · × Bk (Pri+4k−1 ) :

{s} ∪ P′ri ∪ · · · ∪ P′ri+4k−1
is single-crossing with first vote s}

Thus, Cri is the set of all combinations of k-variants from
4k successive non-empty sets Pr that together are single-
crossing with first vote s. We now construct a directed graph
D with vertex set V = Cr1 ∪ · · · ∪ Crq−4k+1 and add an arc

(P′ri , . . . ,P
′
ri+4k−1

) → (P′′ri+1
, . . . ,P′′ri+4k

)

whenever these two vectors are compatible, that is, whenever
P′ri+t = P′′ri+t for all t ∈ [4k − 1]. Note that there are only
arcs between vertices from two successive sets Cri . To finish
the proof, we need the following lemma.

Lemma 6. Profile P admits a k-variant that is single-
crossing with first vote s if and only if D contains a path
of length q − 4k + 1.

Proof. Suppose P′ is such a k-variant. Then, for each ri ,
there is some P′ri ∈ Bk (Pri ) such that P′ri ⊆ P′ by the
correctness of the algorithm in Lemma 5. Then D contains
the path

(P′r1
, . . . ,P′r4k

) → · · · → (P′rq−4k+1
, . . . ,P′rq ).

Conversely, suppose D contains a path of length q−4k +1.
This induces a choice of P′ri ∈ Bk (Pri ) for each i ∈ [q]. Let
P′ = {s}∪P′r1

∪· · ·∪P′rq . We claim that P′ is single-crossing
with first vote s. We check this using Proposition 1.

Suppose, aiming for a contradiction, that there exist prefer-
ence orders x ∈ Pri and y ∈ Pr j with i 6 j such that ∆(s, x)
and ∆(s, y) are incomparable under ⊆. Choose x and y so as
to minimize j − i. Clearly j − i > 4k by construction of Cri .
Take any preference order z ∈ P′ri+2k

. Then by minimality of
j − i, the sets ∆(s, x) and ∆(s, z) must be comparable, and
the sets ∆(s, z) and ∆(s, y) must be comparable (under ⊆).
Since we are only allowed k swaps per vote, we have

d(s, x) 6 ri + k = (ri + 2k) − k 6 d(s, z), and
d(s, z) 6 ri + 3k 6 r j − k 6 d(s, y).

Hence, we must have ∆(s, x) ⊆ ∆(s, z) and ∆(s, z) ⊆ ∆(s, y).
Thus ∆(s, x) ⊆ ∆(s, y), which is a contradiction. �

Now, the digraph D is acyclic, since it admits a topological
ordering; also, for every fixed k it has polynomially many
vertices. Thus, we can decide in polynomial time whether D
contains a directed path with q−4k +1 vertices. By Lemma 6,
such paths correspond to k-variants of P that are single-
crossing with first vote s. Thus, the proof is complete. �

5 Alternative Partition
The alternative partition metric is similar in spirit to the
voter partition metric: given a profile P over a set of alter-
natives A, we ask whether we can partition A into k subsets
A = A1 ∪ · · · ∪ Ak so that for each j ∈ [k] the restriction
of P to Aj is single-crossing. Importantly, each restricted
profile P[Aj ] may be single-crossing with respect to a differ-
ent voter ordering. We will now argue that this problem is
NP-complete.

v1 v2 v3 v4

a a b b
b b a a
c d c d
d c d c

In our hardness reduction, it will be
useful to have some small profiles that
are not single-crossing. For example,
consider the profile on the right. Sup-
pose this profile was single-crossing
with respect to some order <L . By con-
sidering the pair {a,b}, we conclude
that {1,2} <L {3,4} or {3,4} <L {1,2}.
Similarly, by considering the pair {c,d}, we conclude that
either {1,3} <L {2,4} or {2,4} <L {1,3}. The conditions
imposed by {a,b} are incompatible with those imposed by
{c,d}, so this profile is not single-crossing. We can use this
profile as a gadget in our reduction, to ensure that alterna-
tives a,b,c,d cannot all be contained in the same part of our
partition.

Profiles of this type are known as δ-configurations, which
together with ‘γ-configurations’ are used by Bredereck, Chen,
and Woeginger (2013) to characterise the domain of single-
crossing profiles in terms of forbidden subprofiles. Given a
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profile P, we will say that a subset A† ⊆ A of alternatives
induces a δ-configuration if there are four voters i1, i2, i3, i4
and we can write A† = {a,b,c,d} (where a,b,c,d are not
necessarily distinct) so that

a �i1 b and c �i1 d, a �i2 b and d �i2 c,
b �i3 a and c �i3 d, b �i4 a and d �i4 c.

As argued above, when A† induces a δ-configuration, and
A′ ⊆ A is such that P[A′] is single-crossing, it holds that
A† * A′, i.e., the alternatives in A† cannot all be in the same
part of the partition.

Our reduction is from the k-colouring problem. An in-
stance of this problem is an undirected graph G = (V,E) and
a parameter k; it is a ‘yes’-instance if it is possible to partition
V into k independent sets, and a ‘no’-instance otherwise. The
k-colouring problem is NP-complete for each k > 3 (Garey
and Johnson 1979). The high-level idea of our reduction is
that the vertices of G become alternatives, and we use voters
and further dummy alternatives to build δ-configurations that
force alternatives corresponding to adjacent vertices to lie
in different partition parts. The implementation details are
rather involved. Our reduction is inspired by the proof that
it is NP-hard to decide if a given profile can be made single-
crossing by removing k alternatives (Bredereck, Chen, and
Woeginger 2016).
Theorem 7. For every k > 3, it is NP-complete to decide
whether given a profile P we can partition the alternative set
A into k sets A = A1 ∪ · · · ∪ Ak so that for each j ∈ [k] the
profile P[Aj ] is single-crossing.

Proof. This problem is in NP, since one can check in poly-
nomial time whether k sets form a partition and whether a
given profile is single-crossing. To show NP-hardness, we
reduce from the k-colouring problem.

Given an instance G of the k-colouring problem, where
G has vertex set F = { f1, . . . , fn } and edge set E =
{e1, . . . ,em }, we will construct a profile P over a set of al-
ternatives A in such a way that A can be partitioned into
k sets A = A1 ∪ · · · ∪ Ak with each profile P[Aj ] being
single-crossing if and only if G is k-colourable.

For every vertex f i ∈ F we introduce a candidate qi . Let
Q := {qi : i ∈ [n]}.

Define the canonical order of Q to be
〈Q〉 := q1 � · · · � qn .

For every edge ei ∈ E we introduce 4k candidates
a1
i , . . . ,a

2k
i , x1

i , . . . , x
2k
i , and define

Bi := {a1
i , . . . ,a

2k
i }, Xi := {x1

i , . . . , x
2k
i },

with the canonical orders of Bi and Xi being defined as
〈Bi〉 := a1

i � · · · � a2k
i , 〈Xi〉 := x1

i � · · · � x2k
i .

Furthermore, for j ∈ [2k] we let ` = 2k − j and define the
following linear orders over the sets Bi and Xi :

〈̂Bi〉 j := a1
i � a2

i � · · · � a`
i � a2k

i � a2k−1
i � · · · � a`+1

i ,

〈̂Xi〉 j := x1
i � x2

i � · · · � x`i � x2k
i � x2k−1

i � · · · � x`+1
i ,

〈̃Bi〉 j := a j
i � a j−1

i � · · · � a1
i � a j+1

i � a j+2
i � · · · � a2k

i ,

〈̃Xi〉 j := x j
i � x j−1

i � · · · � x1
i � x j+1

i � x j+2
i � · · · � x2k

i .

Define the candidate set A to be

A := Q ∪ B1 ∪ X1 ∪ · · · ∪ Bm ∪ Xm .

Now for every j ∈ [2k] we construct two votes v j ,v
′
j that

rank the candidates as follows:

v j : 〈Q〉 � 〈̂B1〉 j � 〈̂X1〉 j � · · · �
E〈Bm〉 j �

E〈Xm〉 j ,

v′j : 〈Q〉 � 〈̃B1〉 j � 〈̃X1〉 j � · · · �
I〈Bm〉 j �

I〈Xm〉 j .

For each i ∈ [m] it holds that any three distinct candidates
ar
i ,a

s
i ,a

t
i in Bi such that r < s < t, together with votes

v1,v2k−r ,v
′
s ,v2k , induce a δ-configuration, since

v1 : ar
i � as

i � at
i ,

v2k−r : ar
i � at

i � as
i ,

v′s : as
i � ar

i � at
i ,

v2k : at
i � as

i � ar
i .

Similarly, any three distinct candidates xri , x
s
i , x

t
i in Xi with

r < s < t, together with votes v1,v2k−r ,v
′
s ,v2k , induce a

δ-configuration.
Now, for every edge ei = { f j , fk } with j < k we construct

four votes w4i−3,w4i−2,w4i−1,w4i that rank the candidates as
follows:

〈B1〉 � 〈X1〉 � · · · � 〈Bi−1〉 � 〈Xi−1〉 �

q1 � · · · � qj−1 � {qj } ∪ Bi � qj+1 � · · · �

qk−1 � {qk } ∪ Xi � qk+1 � · · · � qn �
〈Bi+1〉 � 〈Xi+1〉 � · · · � 〈Bm〉 � 〈Xm〉.

We still need to define the relative ranking of qj and Bi , as
well as of qk and Xi :

w4i−3 ranks qj � 〈Bi〉 and qk � 〈Xi〉,

w4i−2 ranks qj � 〈Bi〉 and 〈Xi〉 � qk ,
w4i−1 ranks 〈Bi〉 � qj and qk � 〈Xi〉,

w4i ranks 〈Bi〉 � qj and 〈Xi〉 � qk .

Note that for all candidates s ∈ Bi and t ∈ Xi it holds
that votes w4i−3, . . . ,w4i and candidates qj ,qk , s, t induce a
δ-configuration.

Define the profile P to be

{vi ,v
′
i : i ∈ [2k]} ∪ {w4i−3,w4i−2,w4i−1,w4i : i ∈ [m]}.

The profile P can be constructed in polynomial time. We
will now show that G is k-colourable if and only if there
exists a partition A1 ∪ · · · ∪ Ak of A such that P[Ai ] is single-
crossing for each i ∈ [k].
⇐= Suppose A1, . . . , Ak is a partition of A such that

P[A1], . . . ,P[Ak ] are all single-crossing. For each i ∈ [k],
define

Fi := { f j ∈ F : qj ∈ Ai }.

We show that F1, . . . ,Fk is a valid k-colouring for G.
Clearly, F1, . . . ,Fk partition F; hence it suffices to show

that each Fi is an independent set. Suppose, aiming for
a contradiction, that one of the sets Fi , say F1, is not an
independent set. Then there exists an edge e` = ( f i , f j ) ∈ E
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such that f i , f j ∈ F1. By definition of F1 both qi and qj are
in A1.

Recall that any three distinct candidates ar
` ,a

s
`
,at

`
in B` ,

where r < s < t, together with votes v1,v2k−r ,v
′
s ,v2k in-

duce a δ-configuration. Since P[A1], . . . ,P[Ak ] are all single-
crossing, it follows that |B` ∩ At | 6 2 for all t ∈ [k]. Because
|B` | = 2k, it follows that |B` ∩ At | = 2 for all t ∈ [k]; sim-
ilarly, |X` ∩ At | = 2 for all t ∈ [k]. Now let a ∈ B` ∩ A1
and x ∈ X` ∩ A1. Then votes w4`−3, . . . ,w4` and candidates
a, x,qi ,qj induce a δ-configuration, which contradicts the
assumption that P[A1] is single-crossing.

Thus F1, and similarly all other sets Fi , are independent
sets. Hence F1, . . . ,Fk is a valid colouring of G.

=⇒ Now suppose that G is k-colourable. Let F1, . . . ,Fk

be a k-colouring of G. We construct a partition of A =
A1 ∪ · · · ∪ Ak , where for each i ∈ [k] we take

Ai := {qj ∈ A : f j ∈ Fi }

∪ {a2i−1
j ,a2i

j , x
2i−1
j , x2i

j ∈ A : j ∈ [m]}.

The sets A1, . . . , Ak form a partition of A, and thus we only
need to show that P[Ai] is single-crossing for each i ∈ [k].
To do so, we define an order of votes in each profile P[Ai],
i ∈ [k]. We set

Li := v2(k−i+1) > · · · > v2k > v′2i > · · · > v′2k >

v1 > · · · > v2k−2i+1 > v′1 > · · · > v′2i−1 >

{w1,w2,w3,w4} > · · · > {w4m−3,w4m−2,w4m−1,w4m }.

It remains to define Li on the sets {w4 j−3,w4 j−2,w4 j−1,w4 j }

for j ∈ [m]. Suppose that e j = ( fk , f`). Then if f` < Fi ,
then

Li : w4 j−3 > w4 j−2 > w4 j−1 > w4 j ,

and if f` ∈ Fi , then

Li : w4 j−3 > w4 j−1 > w4 j−2 > w4 j .

Note that for all j ∈ [m] in all votes up to v′2k in the linear
order Li candidate a2i

j is ranked above a2i−1
j and candidate

x2i
j is ranked above x2i−1

j , whereas in all votes from v1 on-
wards candidate a2i−1

j is ranked above a2i
j and candidate

x2i−1
j is ranked above x2i

j for all j ∈ [m].
It is straightforward to check that P[Ai ] is single-crossing

with respect to Li by arguing that for all distinct candidates
s, t ∈ Ai the set of votes where s is ranked above t is con-
nected in Li , and so is the set of votes where t is ranked above
s. We omit this argument due to space constraints; details
can be found in the full version of the paper. �

6 Conclusions and Future Work
This work contributes to our understanding of nearly struc-
tured preferences. For two natural notions of distance we
have obtained efficient algorithms for identifying preferences
that are very nearly single-crossing. We consider our algo-
rithmic result for the local swaps distance to be particularly
appealing, because it concerns an operation that only per-
forms small perturbations to voters’ reported preferences.
Indeed, we believe that when preferences are a few local

swaps away from being structured, we can sometimes be
justified in taking the structured version of the profile to be
the starting point of the analysis. It is instructive to contrast
the local swap distance and the voter deletion distance: while
for single-crossing preferences the latter admits an efficient
algorithm even when k is part of the input (Bredereck, Chen,
and Woeginger 2016), the voter deletion distance forces us
to completely ignore some voters’ preferences; in this sense,
the local swaps distance is more egalitarian.

The running time of our algorithm for local swaps, whose
exponent depends on k, will only be acceptable for small
k (and moderate values of n and m). However, this is the
practically relevant case: we are presumably not interested in
profiles that can be made structured by very large perturba-
tions, since then the structure does not explain much anyway.
It would be interesting to obtain other positive results of this
type, i.e., to design algorithms that can efficiently detect if a
given preference profile is very close to being structured.

In contrast to our tractability results for voter partition
and local swaps, we obtain a hardness result for alternative
partition. In a sense, this result is not surprising, as for the
related measures of voter and alternative deletion, a simi-
lar phenomenon is known: the smallest number of voters
that need to be deleted to make a profile single-crossing
can be computed in polynomial time, whereas for alterna-
tive deletion this problem is NP-hard (Bredereck, Chen, and
Woeginger 2016). Intuitively, this is because the definition
of single-crossing preferences focuses on ordering the voters,
and therefore computational problems that deal with rearrang-
ing the voters are easier than those that deal with rearranging
the alternatives. Indeed, for single-peaked preferences, which
are defined in terms of an ordering of the alternatives, the
alternative deletion problem is easy, but the voter deletion
problem is NP-hard (Erdélyi, Lackner, and Pfandler 2017).

Our work leaves a number of interesting open questions.
In particular, for the local swaps distance, it would be de-
sirable to improve the running time of our algorithm, and
to investigate the existence of an FPT algorithm. For the
voter partition algorithm, the complexity of partitioning into
k > 2 sets remains open. It is also natural to ask if there
are analogues of our results for the single-peaked domain.
We note that existing NP-completeness results for this do-
main (Erdélyi, Lackner, and Pfandler 2017), do not rule out
tractability of voter partition for k = 2, or an XP result for
local swaps.

Another research direction is to investigate the complexity
of deciding whether a given profile is close to being struc-
tured, for more general notions of structure, such as being
single-peaked or single-crossing on graphs other than the line
(such as, e.g., trees or cycles). To the best of our knowledge,
this topic has not yet been explored.

Finally, to make our positive results more practically ap-
plicable, it would be desirable to extend tractability results
for winner determination of various preference aggregation
rules (particularly multiwinner voting rules) from the per-
fectly structured profiles to those that are almost structured.
Such results have been obtained for single-peaked or single-
crossing width (Cornaz, Galand, and Spanjaard 2012; 2013;
Skowron et al. 2015), and, very recently, for a few other
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distance measures (Misra, Sonar, and Vaidyanathan 2017).
Results of this type also appear in the literature on manipula-
tion and control (see, e.g., Faliszewski, Hemaspaandra, and
Hemaspaandra 2014; Yang and Guo 2015; 2017). Extending
this line of research to a wider range of domains and distance
measures is a promising direction for future work.
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