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Abstract

A social dichotomy function maps a collection of weak
orders to a set of dichotomous weak orders. Every di-
chotomous weak order partitions the set of alternatives
into approved alternatives and disapproved alternatives.
The Borda mean rule approves all alternatives with above-
average Borda score, and disapproves alternatives with
below-average Borda score. We show that the Borda
mean rule is the unique social dichotomy function sat-
isfying neutrality, reinforcement, faithfulness, and the
quasi-Condorcet property. Our result holds for all do-
mains of weak orders that are sufficiently rich, including
the domain of all linear orders and the domain of all
weak orders.

1 Introduction

The objective of social choice is typically to choose the best
alternatives from a set of feasible alternatives based on the
preferences of various voters. Functions that describe how
this choice is made are called social choice functions. Hence,
a social choice function partitions the set of alternatives into
winning alternatives and non-winning (or losing) alternatives.
Suppose instead that the goal is to split the alternatives into
good alternatives and bad alternatives with the separation
between both sets being as large as possible. Similarly, one
might ask both sets to be as homogeneous as possible. Duddy
et al. (2014) note that social choice functions are not the right
tool for this task. For example, consider a class of students
that is to be divided into beginners and advanced learners
based on how they are ranked by teachers. The goal is to form
two groups of students such that the differences in skill level
within each group are as small as possible. If all teachers
agree on their top-ranked student, any reasonable social choice
function would uniquely choose the unanimously top-ranked
student. Hence, the group of advanced learners would consist
of only this one student; all other students would be put
into the beginners group. In our example this is likely to be
an undesired result, since the differences in skill within the
beginners group would be barely reduced compared to the
entire class.

Thus, we need to drop some of the properties that seem
appealing for social choice functions. A more suitable tool for
our task are social dichotomy functions (Duddy et al. 2014),
which yield ordered 2-partitions of the alternatives. We inter-
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pret ordered 2-partitions as having the approved alternatives
in the first set and the disapproved alternatives in the second
set. In contrast to selecting the best alternatives, there is inher-
ent symmetry in the problem of finding a good separation; in
particular, social dichotomy functions should usually satisfy
reversal symmetry: if all of the input preferences are reversed,
then the output will also be reversed, so that approved and
disapproved alternatives switch place.

We consider a social dichotomy function that is based on
Borda scores. The Borda score of an alternative a is obtained
as follows: a gains a point for each voter i and each alternative
b such that a >; b; a loses a point if b >; a; no points are
assigned if a ~; b. Borda’s rule is the social choice function
that returns the alternatives with maximum Borda score. The
social dichotomy function that we consider in this paper is the
Borda mean rule which outputs all dichotomous weak orders
in which all alternatives with above-average Borda score
are approved, and all alternatives with below-average Borda
score are disapproved. If there are alternatives with precisely
average Borda score, then the rule returns several orders with
all ways of breaking the ties. This rule was defined by Duddy
et al. (2014) and further discussed by Duddy, Piggins, and
Zwicker (2016) and Zwicker (2016). Notice that the Borda
mean rule satisfies reversal symmetry.

Reversal symmetry (similarly defined) is also a natural
property for social preference functions, which return a set
of linear orders of the alternatives. We will see that social
dichotomy functions are more closely related to social pref-
erence functions than to social choice functions. Kemeny’s
rule (Kemeny 1959) is an example of a social preference
function that has been very influential in social choice theory.
Young (1995) predicted that “the time will come when it is
considered a standard tool for political and group decision
making”. Given a preference profile over an alternative set
A, the rule assigns to each possible weak order > a Kemeny
score: the order gains a point for each voter i and each pair
of alternatives a, b € A such that a > b and a >; b; the order
loses a point if b >; a; no points are assigned if a ~; b.
Thus, the Kemeny score of > indicates how much pairwise
“agreement” there is between the output order > and the input
preferences. Kemeny’s rule returns the set of all linear orders
with maximum Kemeny score.

Zwicker (2016) introduced the idea of using Kemeny
scores to define aggregation rules for other output types. For



example, suppose we maximize the Kemeny score over the
family of relations {x} > A\ {x} that have a unique most-
preferred element and that are indifferent between all other
alternatives. This yields precisely the relations whose most-
preferred element is a winner of Borda’s rule. In his paper,
Zwicker (2016) proposed the k-Kemeny rule which returns
the k-chotomous weak order of highest Kemeny score; a
weak order > is called k-chotomous if its induced indifference
relation ~ partitions A into at most k indifference classes.
Thus, they define an ordered k-partition. In particular, 2-
chotomous orders are usually called dichotomous; these are
the orders that partition the alternatives into a set of approved
and a set of disapproved alternatives. Hence, the 2-Kemeny
rule is a social dichotomy function. Duddy et al. (2014)
showed that the 2-Kemeny rule is identical to the Borda
mean rule. This equivalent definition of the Borda mean rule
suggests that it is a good tool for finding dichotomies that
maximize the separation between the set of approved and the
set of disapproved alternatives.

Social choice theory abounds with different proposals
for voting rules; which of them should we choose to use?
Axiomatic characterizations provide some of the strongest rea-
sons in favor of using certain rules. For example, Kemeny’s
rule is largely seen as a very attractive social preference func-
tion because of its characterization by Young and Levenglick
(1978) (though there are other reasons, such as the rule’s inter-
pretation as a maximum likelihood estimate (Young 1988)).
In this paper, we present an axiomatic characterization of the
Borda mean rule, using the same axioms as the characteri-
zation of Kemeny’s rule by Young and Levenglick (1978),
showing that the above argument in favor of Kemeny’s rule
applies just as well to the Borda mean rule and hopefully
establishing its place as a very natural social dichotomy func-
tion. In formal terms, our result is that the Borda mean
rule is the unique social dichotomy function satisfying neu-
trality, reinforcement, faithfulness, and the quasi-Condorcet
property.! Our proof follows a similar structure as Young’s
(1974a) characterization of Borda’s rule. In particular, we
use linear algebra and exploit the orthogonal decomposition
of weighted tournaments popularized by Zwicker (1991), but
we do not need any convex separation theorems.

Most of our axioms are commonly used, including the
uncontroversial axioms of neutrality (requiring that all alter-
natives are treated equally) and faithfulness (requiring sensible
behavior in single-voter situations). Reinforcement (often
known as consistency) is the workhorse of many axiomatic
characterizations in social choice. It is a variable-electorate
axiom which requires that if the same dichotomy is selected
in two disjoint profiles, then it is still selected if we merge
the two profiles into one. Reinforcement is typically satisfied
by rules which maximize a sum of the “scores” that each
voter assigns to a potential output. The most specialized
axiom in our collection is the quasi-Condorcet property, in-
troduced by Young and Levenglick (1978) and also used by

For expository purposes, Young and Levenglick (1978) intro-
duce what they call the “Condorcet axiom” which is a strengthening
of faithfulness and the quasi-Condorcet property. However, as they
note, in their proof this strengthening is not required.

Barthélemy and Janowitz (1991). It requires that a “dummy
alternative” (one that is tied with every other alternative in
a majority comparison) can move around freely within the
output relation. (We give a formal definition below.) The
quasi-Condorcet property is stronger than the cancellation
axiom and thus, in conjunction with reinforcement, implies
that the output can only depend on the weighted majority
relation (see Lemma 4). Neither of the four axioms in our
collection can be dropped without the characterization result
breaking down (see Section 8).

Our result applies to various possible input types. In
particular, it applies when votes are given by linear orders, or
when they are given by arbitrary weak orders. It also applies
to j-chotomous weak orders whenever j > 3; thus, our result
characterizes Zwicker’s (2016) (j, 2)-Kemeny rule for each
J = 3, which is the Borda mean rule as applied to profiles of
Jj-chotomous weak orders. More generally, our proof works
whenever the domain of allowed preference orders forms a
McGarvey domain, that is, whenever every possible weighted
majority tournament (with only even weights or only odd
weights) can be induced by a profile using such orders. The
domains of linear orders, of weak orders, and of j-chotomous
orders (j > 3) are McGarvey domains.

2 Related Work

Duddy, Piggins, and Zwicker (2016) study a setting in which
every voter holds a binary evaluation of the alternatives or,
equivalently, a dichotomous weak order. A binary aggrega-
tion function maps the voters’ binary evaluations to an ordered
tripartition of approved, tied, and disapproved alternatives.
Thus, the output of a binary aggregation function assigns
to each alternative one of the values +1, 0, or —1. Duddy,
Piggins, and Zwicker (2016) propose the mean rule, which
assigns +1 to all alternatives with above-average approval
score, assigns 0 to alternatives whose approval score is exactly
average, and assigns —1 to all alternatives with below-average
approval score. They explain that the mean rule can be used
in judgement aggregation for certain agendas, and connect the
mean rule with the scoring rules for judgement aggregation
introduced by Dietrich (2014). Further, Duddy, Piggins, and
Zwicker (2016) prove that the mean rule is the only binary
aggregation function satisfying axioms called faithfulness,
consistency, cancellation, and neutrality. Their notion of
consistency is a version of Smith’s (1973) axiom of separabil-
ity: if an alternative is approved by one electorate and either
approved or ranked as tied by another electorate, then it is
approved by the union of both electorates (and analogously
for disapproved alternatives). While the mean rule is very
closely related to the Borda mean rule (when evaluated on
profiles of dichotomous weak orders), the formal setting of
Duddy, Piggins, and Zwicker (2016) differs significantly from
ours. In particular, our characterization result is logically in-
dependent from theirs, since our reinforcement axiom neither
implies nor is implied by their consistency axiom. Further,
our proof does not work for the case where voters are only
allowed to submit dichotomous weak orders.

Since social dichotomy functions can be viewed as re-
turning a set of multiple winners, the recent literature on



multiwinner voting rules is related (for a survey, see Fal-
iszewski et al. 2017). Voting rules in that setting return a
committee of k alternatives, where k is fixed. Examples in-
clude the k-Borda rule (which returns the k alternatives with
highest Borda score, see Debord 1992), as well as Chamberlin
and Courant’s (1983) rule and Monroe’s (1995) rule which
aim for committees providing proportional representation.
Note that, in contrast, the definition of a social dichotomy
function does not impose any cardinality constraint on the set
of approved alternatives. Indeed, multiwinner rules typically
do not satisfy reversal symmetry. Axiomatic characteriza-
tions of multiwinner rules using consistency-type axioms
are provided by Skowron, Faliszewski, and Slinko (2016) for
linear order preferences and by Lackner and Skowron (2017)
for approval preferences. The k-Borda rule was characterized
by Debord (1992); his result is close to ours. The k-Borda
rule can be equivalently defined as the rule that returns the
Kemeny score-optimal dichotomous orders with exactly k&
approved alternatives.

Recently, there has also been some discussion of multi-
winner voting rules with a variable number of winners. The
Borda mean rule is an example of such a rule. Kilgour
(2016) reviews several such rules for the case of approval (di-
chotomous) preferences, and Faliszewski, Slinko, and Talmon
(2017) study their computational complexity.

A recent paper by Lang et al. (2016) proposes several
schemes of rules that can be used to aggregate preferences
into an arbitrary structure. For example, they propose a
Kemeny scheme that can be used to find an aggregate ranking,
or a committee, or a single winner, or an ordered committee,
etc. Applying their Kemeny scheme to the output type of a
dichotomy (i.e., an ordered partition into two pieces) yields
the Borda mean rule. They also propose two other schemes
that specialized to dichotomies, yield different rules. The first
is based on minimizing a Hamming distance and yields the
Copeland mean rule, which approves an alternative whenever
its Copeland score is above-average. The second generalizes
the Ranked Pairs rule due to Tideman (1987), and yields a
Ranked Pairs rule for dichotomies.

Many characterizations of Borda’s rule as a social choice
function, and of scoring rules more generally, are available
(for a survey, see Chebotarev and Shamis 1998). Young
(1974a) gave the first characterization of Borda’s rule using
reinforcement. Hansson and Sahlquist (1976) gave an alter-
native proof that does not use linear algebra. Young (1975)
characterized the class of all scoring rules, and identified
Borda among them by adding an additional axiom (cancella-
tion). Smith (1973) independently found a characterization
of scoring rules as social welfare functions; Young (1974b)
gave an alternative proof of that result.

The Borda mean rule is also related to Nanson’s rule,
which, in order to determine a winner, repeatedly eliminates
all alternatives with below-average Borda score (Niou 1987).
The Borda mean rule is the result of stopping Nanson’s
procedure after its first round.

The quasi-Condorcet property, a key axiom in our charac-
terization, was introduced by Young and Levenglick (1978)
for characterizing Kemeny’s rule. The axiom also proved
useful in the literature about the median procedure for ag-

gregating other kinds of data structures, such as for median
semilattices (Barthélemy and Janowitz 1991) and median
graphs (McMorris, Mulder, and Powers 2000).

3 Definitions

LetN = {0, 1,2,...} be an infinite set of voters, and let A be
a finite set of alternatives, where |A| = m. The preferences
of an agent i € N are given by a binary relation >; C AX A
which is complete and transitive; such a relation is called a
weak order. We will write a >; bif a »; bbut b ¥#; a, and
a ~; bifbotha >; band b >; a. The reverse —> of a weak
order »> is defined by (a, b) € —» if and only if (b, a) € =. If
o is a permutation of A, we can naturally define the relation
o(>) = {(c(a),c(b)): (a, b) € =}, and extend this definition
to sets and profiles of weak orders.

A weak order > is called a linear order if it is antisymmetric,
so that a ~ b only if a = b. A weak order > is dichotomous
if there is a partition (A, Ap) of A into two subsets such that
a>bifandonlyifa € A and b € A,. Note that one of A;
and A, may be empty, in which case > = A X A. Equivalently,
an order is dichotomous if and only if there are no three
alternatives a, b,c € A with a > b > c. We will write R(A)
for the set of all weak orders over A, L(A) for the set of linear
orders over A, and R;(A) for the set of dichotomous weak
orders over A. When the set A is clear from the context, we
write R, £, and R;, respectively.

An electorate N is a finite and non-empty subset of N.
The set of all electorates is denoted by ¥ (N). A (preference)
profile P € RYN on electorate N is a function assigning a weak
order to each voter in N. The preferences of voter i in profile
P are then denoted by >;.

Let D C R be a domain of weak orders that the voters are
allowed to submit. Typical choices for D will be R or L.
A social dichotomy function f is a map from the set of all
profiles in DV for some N € F(N) to non-empty subsets of
Ry, so that f(P) C R, for all profiles P. We denote by — f
the social dichotomy function that returns the reverse of the
weak orders returned by f, i.e., —f(P), for all profiles P.

Given a profile P € R™ on the electorate N and two
alternatives a, b € A, let us write

Ngp = |{i€N: a >; b}l

for the number of voters in P who strictly prefer a to b. The
majority margin of a over b is then given by myp := ngp—npy;
if mgp > 0 then a majority of voters prefers a to b. Note that
the majority margins form a skew-symmetric m X m matrix
with zeros on the main diagonal (since mg,, = —mp,).2 By
T(P) € Z™™ we denote the matrix of majority margins
induced by P. This operation extends to sets of profiles by
taking the union of the images for single profiles. We can
interpret 7' as a weighted tournament whose vertices are given
by the alternatives; there is an arc from a to b if and only if
mgp > 0, and the arc is labelled by mp,.

The domains we consider are required to be sufficiently rich
in terms of the weighted tournaments they induce. A domain
D is a McGarvey domain if every weighted tournament that

2A matrix M € R is skew-symmetric if M = —M7 .



can be induced by a preference profile on linear orders can
be induced by a profile on the domain. Formally,

T(Pe LN NeFN)}) CTHP € DV: N e F(N)}).
(McGarvey domain)

It has been shown by Debord (1987) that the set of linear
orders can induce exactly those weighted tournaments whose
off-diagonal entires have the same parity. Hence, a domain
is a McGarvey domain if and only if it can induce all those
weighted tournaments. Examples of McGarvey domains are
L, R, and the set of all j-chotomous weak orders on A for
J = 3. The set of dichotomous weak orders R, and the set of
weak orders that are single-peaked with respect to some fixed
liner order are not McGarvey domains, since the majority
relation is transitive for every profile from either of these
domains.

The (symmetric) Borda score $(a) of an alternative a € A
is given by

B@):=" > map,

beA\{a}

the net weighted out-degree of a in the weighted tournament
induced by P. This definition of Borda scores makes sense
for profiles of arbitrary weak orders. For the case of linear
orders, it is easy to see that S, thus defined, is a positive
affine transformation of the Borda scores as defined through
the usual scoring vector (m — 1,m — 2,. .., 1,0); indeed, the
scoring-based Borda score of a is 8(a)/2+|N|(m—1)/2. Thus,
for example, the same alternatives are Borda winners for either
definition of Borda scores.3 Note that, because the majority
margins are skew-symmetric, we have Y, 4 8(a) = 0, and
so the average (symmetric) Borda score of the alternatives is
always 0, which makes it convenient to deal with symmetric
Borda scores.

4 Borda Mean Rule

As we have mentioned in the introduction, there are several
equivalent ways of defining the Borda mean rule. The most
straightforward definition uses the average Borda score di-
rectly. The Borda mean rule BM is the social dichotomy
function with

BM(P) = {> €D:a>bforallabeA
with B(a) > 0 and B(b) < o}

for every preference profile P € DN on any electorate N.
Thus, the Borda mean rule returns all dichotomous weak
orders where alternatives with above-average Borda score are
placed in the upper indifference class and alternatives with
below-average Borda score are placed in the lower indifference
class. (Recall that, for symmetric Borda scores, the average
Borda score is always 0.) Alternatives with exactly average

3Qurs is not the only sensible extension of Borda scores to weak
orders. An alternative choice for the score for a € A would be
Diien (m —rank;(a)), where rank;(a)) = k iff a is in the kth highest
indifference class of >;. This alternative definition notably cannot
be written only in terms of the majority margins m,j. The two
definitions are discussed by Chebotarev and Shamis (1998) and
Giirdenfors (1973).

Borda score are placed once in the upper and once in the lower
indifference class (so that multiple rankings are returned).
In the framework of Zwicker (2016), the Borda mean rule is
obtained as a special case of Kemeny’s rule with dichotomous
output. Precisely, the Borda mean rule is the rule returning
the dichotomous weak orders of maximum Kemeny score:

BM(P) = arg max Z My .

>eRy x>y

Hence, the Borda mean rule minimizes the aggregate distance
of > to the voters’ preferences or, alternatively, maximizes
the agreement with the voters’ preferences.

It can be observed from the definition that the Borda mean
rule only depends on the pairwise majority margins and
hence on the weighted tournament induced by a preference
profile.# This property will play an important role in our
characterization.

An interesting property of the Borda mean rule is that it
always approves Condorcet winners and always disapproves
Condorcet losers, provided they exist. This can be seen by
recalling that if a is the Condorcet winner, then 8(a) > 0 from
the definition of 3, and similarly for Condorcet losers; alter-
natively one can note that the Kemeny score of a dichotomy
> strictly improves if we move the Condorcet winner from
the lower to the upper indifference class.

To help us understand the Borda mean rule, we discuss its
behavior for the weighted tournaments given in Figure 1. In
the tournament 7', all alternatives have Borda score O (later we
will say that T is purely cyclic), and so we have BM(T) = R;.
The tournament 7’ is purely cocyclic with Borda scores
3,0, -3 for x, y, z, respectively. Hence BM(T’) = {{x, y} >
{z}., {x} = {y,z}}. T” = T + T’ has both a cyclic part and a
cocyclic part. The Borda scores are 3,0, -3 for x, y, z, which
implies that BM(T”') = {{x, y} = {z}, {x} = {y, z}}.

5 Axioms

Duddy et al. (2014) argue that social dichotomy functions
should satisfy reversal symmetry: if all voters reverse their
preferences, then the approved set becomes the disapproved
set and vice versa. Formally, a social dichotomy function
satisfies reversal symmetry if

f(=P) = —f(P) forall P € DY and N € F(I).

(Reversal symmetry)

While the Borda mean rule satisfies reversal symmetry,
we do not impose this axiom for our characterization (it is
implied by our other axioms). Instead, we use the same
four axioms that also feature in Young and Levenglick’s
(1978) characterization of Kemeny’s rule. First, we require
social dichotomy functions to satisfy neutrality: renaming the
alternatives in a preference profile leads to the same renaming
in the output relations. Neutrality thus prescribes that a
social dichotomy function is symmetric with respect to the
alternatives and prevents it from being biased towards certain

+Adapting Fishburn’s (1977) classification of the informational
requirements of social choice functions to social dichotomy functions
(whose input could contain weak orders), the Borda mean rule is a
C2 rule.



2
2 ¥ 2

(a) Cyclic tournament T

(b) Cocyclic tournament 7”7

(c) Mixed tournament 7"’

Figure 1: Examples for the Borda mean rule. The weight of an edge denotes the majority margin between the two adjacent

alternatives. Unlabelled edges have weight 1.

alternatives. Let TT(A) denote the set of all permutations on
A. Then, a social dichotomy function f satisfies neutrality if

f(o(P)) = o(f(P)) forall P e DV, N € F(N),
and o € II(A). (Neutrality)

When dealing with variable electorates, it seems reasonable
to require that the rankings that are returned for two disjoint
electorates should be precisely those that are returned when
the electorates are merged. If the output for two electorates
does not intersect, the condition says nothing. This is known
as reinforcement. A social dichotomy function f satisfies
reinforcement if

f(P)Yn f(P") # @ implies f(P)N f(P') = f(PUP’)

forall P € DN and P’ € DV with NN N’ = @.
(Reinforcement)

Notice that reinforcement is agnostic about the type of output.
It may be defined in the same way for every kind of aggregation
function, such as social choice functions (which return a subset
of alternatives) or social preference functions (which return
a set of linear orders of the alternatives). Reinforcement
was introduced by Young; Young (1974a; 1975) (he called
it consistency) to characterize scoring rules; the axiom is
related to separability introduced by Smith (1973) (now often
also called consistency) for social welfare functions.

Next, we consider an axiom that specifies how to deal with
“dummy” alternatives that are independent from the others
in the sense that they are tied with every other alternative
in a pairwise majority comparison. Formally, an alternative
x € Ais a dummy if my, = 0 for all y € A. The quasi-
Condorcet property asserts that dummy alternatives can be
placed arbitrarily in the output relation. To formalize this,
for B C A, let >|p be the dichotomous weak order on B
obtained by restricting > € R, to alternatives in B. If > is a
dichotomous weak order on A, then >(B) = {> € R>: >|p =
S|g} is the set of dichotomous weak orders on A that coincide
with = on B. For a set § C R,, we define the operation by
S(B) = Uses S(B). A social dichotomy function f satisfies
the quasi-Condorcet property if

f(P)= f(P){B) where A\B={x€A:my =0

forall y € A} forall P € DY and N € F(N).
(Quasi-Condorcet property)

The quasi-Condorcet property is a strengthening of the cancel-
lation axiom, which requires that all dichotomies are returned

whenever all majority margins are zero. Formally, f satisfies
cancellation if

f(P)=R, forall P € DY and N € F(N) with my, = 0

forall x,y € A. (Cancellation)

To see that the quasi-Condorcet property implies cancellation,
observe that whenever all majority margins are zero in some
profile P, every alternative is a dummy and B = @. For every
dichotomous weak order > on A, we have that >(@) = R,.
Hence, f(P) = R, if f satisfies the quasi-Condorcet property.
Within the class of scoring rules, the cancellation axiom (for
SCFs) characterizes Borda’s rule (Young 1975).

Our axioms so far are completely oblivious of the meaning
of preferences. Without an axiom that prescribes some degree
of correlation of the voters’ preferences with the aggregated
preferences, for example the trivial social dichotomy func-
tion always returning all dichotomies is not ruled out. An
arguably minimal axiom of this nature is faithfulness, which
requires that whenever the electorate consists of one voter,
the aggregated preference should not contradict that voter’s
preferences. Formally, a social dichotomy function f satisfies
faithfulness if

> C» forall > € f(P),P e D andieN.
(Faithfulness)

6 The Linear Algebra of Weighted
Tournaments

Let us define a few special weighted tournaments that will be
useful later, see Figure 2 for drawings. Given three distinct
alternatives x,y,z € A, we write Cy,, for the weighted
tournament with my, = my, = my = 1, myx = myy, =
my; = —1, and all non-specified values 0. Thus, Cyy; is a
3-cycle. Next, given a set X C A of alternatives, we write
Dy for the weighted tournament with

1 ifaeX,b¢ X,
magp =4—1 ifa¢ X,be X,
0 otherwise.

Thus, Dy is the weighted tournament induced by a profile
containing a single dichotomous voter i with X >; A\ X.
Finally, for alternatives x, y € A we will need the weighted
tournament S;‘ = Dy + Da\{y) Which consists of a single
“top” alternative x, a single “bottom” alternative y, and all
other alternatives in between; x defeats y by a majority margin
of 2.



(a) Cycle Cxy;

(b) Tournament Dy

(¢) Tournament S;C

Figure 2: Some types of tournaments. Unlabelled arcs have weight 1.

For our characterization, it will be useful to understand the
structure of weighted tournaments better, and so we give a
brief introduction to their linear algebra. Let V be the vector
space of rational-valued skew-symmetric m X m matrices
(and, equivalently, of weighted tournaments). Note that the
dimension dim V of V is (}). Identifying a skew-symmetric

matrix with a vector in Q""~1/2  this vector space can be
endowed with the usual inner product.> The cycle space
Veyele = (Cxyz: X, ¥,2 € A) is defined as the span (the set
of all linear combinations) of all 3-cycles (equivalently, the
span of all simple cycles). The cocycle space Veocycle =
(Dx: X C A) is defined as the span of all tournaments Dy
(equivalently, the span of all D). It can be checked that
dim Veyele = (') —(m—1) and dim Veoeyele = m— 1. Moreover,
Veyele and Veoeyele are orthogonal, i.e., for all Teyele € Veyele
and Tcocycle € Vcocycle’ we have Tcycle : Tcocycle = 0. It can be
checked that these two subspaces are orthogonal and jointly
span V.

Proposition 1. The subspaces Viycie and Veoeyere are orthog-
onal and jointly span 'V, that is, V = Veyele ® Veoeycle-

With this decomposition, given a weighted tournament 7',
we can uniquely write T = Toycle +Teocycles where Teyele € Veycle
is the cyclic component of T and Teocycle € Veocycle iS the
cocyclic component of T. We say that T is purely cyclic
if T = Teyele 50 that Teocyele = 0, and we say that T purely
cocyclic if T = Teoeyele 0 that Teyee = 0. Of the examples
in Figure 2, Cx, is purely cyclic, and Dx and S§ are purely
cocyclic. In Figure 1, the tournament 7"’ = T + T’ can be
decomposed into its cyclic component T and its cocyclic
component 7”.

If T is a purely cyclic tournament, then every alternative
has Borda score 0. Hence the Borda scores induced by a
given tournament 7" are the same as the Borda scores induced
by its cocyclic component Teocycle- In fact, knowledge of the
Borda scores is enough to construct T¢ocycle, as is shown by
the following convenient characterization of purely cocyclic
tournaments.

Lemma 2 (Zwicker 2016). A weighted tournamentT is purely
cocyclic if and only if it is difference generated, i.e., there
exists a function y: A — R such that myp = y(a) — y(b)
for all a,b € A. In fact, if T is purely cocyclic, then it is
difference generated by y(a) := B(a)/m, i.e., by Borda scores,
suitably rescaled.

The function 7y is unique up to adding a constant. We can

5The inner product of two vectors u,v € Q" is defined to be
u-v =30 upv.

normalize y by requiring that ), 4 y(a) = 0, in which case
we then have y(a) = B(a)/m for all a € A.

For example, the tournament Dy is difference generated
with y(x) = 1 for all x € X and y(z) = O for all z ¢ X.
The tournament S is difference generated with y(x) = 1,
y(y)=-1,and y(z) =0forz € A\ {x, y}.

With this result, it is easy to find the decomposition of a
given tournament. First construct the cocyclic component
Teocycle using the Borda scores, and then obtain Teyele =
T - Tcocycle~

7 Characterization

We are now ready to state and prove our main result. For the
remainder of this section, let D C R be some fixed McGarvey
domain.

Theorem 3. A social dichotomy function f satisfies neutrality,
reinforcement, faithfulness, and the quasi-Condorcet property
if and only if f is the Borda mean rule.

The fact that the Borda mean rule satisfies all four axioms
follows readily from the definition. Hence we only prove the
“only if” part of Theorem 3. Let f be a social dichotomy
function satisfying neutrality, reinforcement, faithfulness, and
the quasi-Condorcet property. We show that f is the Borda
mean rule. The proof is split up into five lemmas; in the
statement of each lemma, we mention which axioms are
used in their proofs. Whenever cancellation suffices as a
weakening of the quasi-Condorcet property, we note this as
well.

Our first two lemmas are also part of Young’s (1974a)
characterization of Borda’s rule. Their conclusions do not
depend on the type of output of f, and in particular also hold
for social choice functions and social preference functions (for
the appropriate definition of cancellation). Young (1974a)
operates in the context of profiles of linear orders, but the
arguments work for any McGarvey domain (with minor
adaptions). We include the proofs for completeness.

Lemma 4 (Young 1974a, Young and Levenglick 1978). If
a social dichotomy function f satisfies reinforcement and
cancellation, then f only depends on the majority margins.

Since the quasi-Condorcet property implies cancellation,
this shows that f only depends on the majority margins
induced by a preference profile. In particular, this implies
that f is anonymous, i.e., the outcome is invariant under
renaming the voters. In light of Lemma 4, we can view f as
a function that takes as input a weighted tournament that is
induced by some preference profile P € DV with N € F(N).



The following lemma shows that f admits a unique extension
to all weighted tournaments that preserves all axioms.

Lemma 5 (Young 1974a). If a social dichotomy function
f satisfies reinforcement and cancellation, then f can be
uniquely extended to the domain V of all rational weighted
tournaments, in a way that preserves reinforcement, neutrality,
faithfulness, and the quasi-Condorcet property.

Lemma 5 enables us to change the domain of f from
preference profiles to V, the set of rational-valued skew-
symmetric matrices (equivalently, weighted tournaments),
as f is invariant on the set of profiles that induce a given
weighted tournament. As this is more convenient to work
with, we will view f as a function with domain V from now
on.

We now show that f only depends on the Borda scores of
the alternatives. To achieve this result, we will show that f is
trivial on purely cyclic tournaments, in the sense of returning
all dichotomies; this implies that the cyclic part of a weighted
tournament can be ignored when computing the outcome of
f- Since the cocyclic part is completely determined by the
Borda scores (by Lemma 2), f can then only depend on the
Borda scores. As a first step, we show that f is trivial for the
building blocks Cy,, of the cycle space, using an argument
that makes heavy use of neutrality.

Lemma 6. If f satisfies neutrality, reinforcement, and can-
cellation, then f(Cupe) = Ro.

Proof. Let C = Cgpc and > € f(C). Let o = (a b c) be the
cyclic permutation that maps a to b, b to ¢, and ¢ to a and
leaves all other alternatives fixed. Observe that C = o°(C).
Thus, by neutrality of f, we must have o(>) € f(C) and
o2(>) € f(C). Hence, there is a 2-partition Z; U Z, of
A\ {a, b, c} such that one of the following dichotomous weak
orders is contained in f(C).

{a,b,c}UZ, > Z, or
{a} U Z; > {bctUZ, or

Z, »{a,b,c}UZ, or
{bc}UZ >{a}VUZ,

Now consider the permutation ¢ of A that transposes b and ¢
and leaves all other alternatives fixed, i.e., & = (b ¢). Note
that 6-(C) = Ccpq, the reverse of cycle C = C,p. Then, by
neutrality, 6-(f(C)) = f(6(C)). Thus, in each of the three
cases,

F(O)Nf(E(C) = fICO)N&(f(C)) # 2.

Hence, reinforcement and cancellation imply that
F(O) N f(6(C) = F(CUF(C)) =Ry,

where the second equality follows from the fact that C U 6(C)
is the weighted tournament with all edge weights equal to 0.
Hence, f(C) = R. O

Next, we lift the result for 3-cycles Cyy, to apply to all
tournaments in Veycle.

Corollary 7. If a social dichotomy function f satisfies neu-
trality, reinforcement, and cancellation, then f depends only
on Borda scores.

Proof. Let T be any weighted tournament, and consider its
orthogonal decomposition T = Teycle + Teocycle- We will
show that f(T) = f(Tcocycle)- Because Teoeyele only depends
on Borda scores (by Lemma 2), then so does f. Since
the space of purely cyclic tournaments is spanned by 3-
cycles, we can write Teyele = Zx’y,z AxyzCxyz, Where we
may assume Ay, > 0 for all x,y,z € A (since we can re-
place negative values by observing that Cxy, = —C,yx). By
Lemma 6, we have f(Cyxy;) = Ro. Thus, by reinforcement,
S(Teyere) = Ma,,.>0 f(Cxyz) = Ra. Thus, again by reinforce-

ment, f(T) = f(Tcycle) N f(Tcocycle) = f(Tcocycle)- O

Remark 8. The conclusion of Corollary 7 can also be proven
using the axioms of neutrality, reinforcement, faithfulness (in
addition), and cancellation (rather than quasi-Condorcet),
by adapting the proofs of Debord (1992).

With the conclusion of Corollary 7 in place, the quasi-
Condorcet property becomes a much stronger axiom: while
previously it only implied that dummy alternatives (those
that are majority-tied with every other alternative) can be
moved around freely, now we see that this is the case for all
alternatives with Borda score 0: Dummy alternatives have
Borda score 0, and since f only depends on Borda scores, f
must treat dummy alternatives and alternatives with Borda
score O identically.

Next we observe that f is equivalent to the Borda mean rule
for the purely cocyclic tournaments S shown in Figure 2c.
These tournaments have the useful property that the Borda
score of all but two alternatives is zero, and, as we will see
in the proof of Lemma 10, every purely cocyclic tournament
can be decomposed into such tournaments.

Lemma 9. If a social dichotomy function f satisfies neutral-
ity, reinforcement, and the quasi-Condorcet property, then
f(S5) € {BM(S5), —BM(Sy), Ra} for all x,y € A.

Proof. By Corollary 7, any such f depends only on Borda
scores. The weighted tournament S (see Figure 3) is Borda-

score equivalent to the weighted tournament :S:;‘ given by
Myy =m, my, =—m, andmg, =0 otherwise.

This implies that it suffices to show that f (:S";C) €
{BM(§§), —BM(§;‘), R>}. In 5;‘ , all alternatives except x
and y are dummies. If there is > € f(§;‘) such that x ~ y,
neutrality applied to the permutation o = (x y) implies
that > € f(o(S¥)) = f(S). Hence, f(S5) N f(8) # @.
Reinforcement implies that

FENNFS) = fSTUS) = Ro.

The latter equality follows from cancellation (implied by the

quasi-Condorcet property) and the fact that in §;‘ U 3} all
alternatives are dummies.
If there is > € f(S5) such that x > y, then by the quasi-

Condorcet property, BM(S’;“) ={FeRy:x>y}C f(:?;‘).
Similarly, if there is > € f (§;‘ ) such that y > x. If there are
> € f(§;‘) such that x > y and y > x, then BM(E;‘) U



(a) Tournament S;C

©

(b) Tournament §;‘

Figure 3: The tournaments used in the proof of Lemma 9. Each alternative has the same Borda score in either tournament.

—BM(E;?) cf (§;‘ ). Neutrality applied to the permutation
o = (x y) implies that

—BM(S}) U BM(SY) = o(BM(S})) U o-(—-BM(S))
€ f(o(5) = F(S).
Hence, f(SY) N £(5Y) # @. Reinforcement implies that
FE)NFE) = 5y USY) =R
In summary, f(S¥) € {BM(S}), -BM(SY), R} O

Denote by TRIV the social dichotomy function that always
returns all dichotomous weak orders, i.e., TRIV(T) = R, for
all T € V. In combination with our axioms, either one of
the three cases characterized in Lemma 9 pins down f on all
tournaments.

Lemma 10. If f satisfies neutrality, reinforcement, and the
quasi-Condorcet property, then f € {BM,—BM, TRIV }.

Proof. Let x,y € A and g € {BM,—BM, TRIV} depending
on whether f(S5) = {BM(S}), -BM(S;), R2}. By Lemma 9,
g is well-defined and, by neutrality of f, g is independent
of x,y. First note that, by Corollary 7, it suffices to show
that f is equal to g for purely cocyclic tournaments. Let T
be a purely cocyclic tournament. We prove the statement by
induction on the number of alternatives with non-zero Borda
score in T'.

If there are no such alternatives, then T = 0 and every
alternative has Borda score 0, and so by cancellation (implied
by the quasi-Condorcet property), we have f(T) = R, = g(T).

Now assume that not all alternatives have Borda score 0 in
T and f(T') = g(T') forall T’ € V in which fewer alternatives
have non-zero Borda score than in 7. By Lemma 2, T is
difference generated by a function y: A — R. Since not all
Bordascores are 0, y is not constant. Let X € argmax ., y(x)
and x € argmin,., y(x). We may assume without loss
of generality that )} .4 v(x) = 0, since adding a constant
function to y does not change the weighted tournament it
generates. This implies that y(x) > 0 and y(x) < 0. Let
¢ = min{|y(X)|, |y(x)|} > 0. Let T’ be the tournament that
is difference generated by y’: A — R with y'(x) = y(X) — 6,
Y'(x) = y(x) + 0, and y'(x) = y(x) for all x € A\ {X,x}.
Note that either X or x now has Borda score 0 in 7’. Thus,
there are fewer alternatives with non-zero Borda score in
T’ than in T, and so f(T’) = g(T’) by assumption. Also,
F(ST) = g(ST), by definition of g. In all three cases, we have

g(T")Ng(Sy) # @. From thisand 7 = T" + 6S§ it follows by
reinforcement that

f(T) = FT') N f(S) = g(T') N g(S7) = g(T).
O

Neither —BM nor TRIV satisfies faithfulness. In combina-
tion with Lemma 10, this completes the proof of Theorem 3.

8 Independence of the Axioms

We show that all four axioms are indeed required for the
characterization by giving a social dichotomy function that
satisfies all but one of the axioms for each of the four axioms.

e Neutrality: Fix two alternatives a,b € A and define a
skewed variant of the Borda mean rule by first doubling the
weight of the edge between a and b and then calculating
the outcome of the Borda mean rule.

* Reinforcement: Apply the sign-function to all majority
margins (i.e., replace positive numbers by +1 and replace
negative numbers by —1) before calculating the outcome of
the Borda mean rule. This yields the Copeland mean rule
that approves all alternatives with above-average Copeland
score and disapproves those with below-average Copeland
score.

e Faithfulness: Reverse all dichotomous weak orders re-
turned by the Borda mean rule (—BM) or always return all
dichotomies (TRIV). Lemma 10 shows that these are in
fact the only other social dichotomy functions that satisfy
the remaining axioms.

* Quasi-Condorcet property: Whenever all alternatives
have Borda score zero (the weighted tournament is
purely cyclic) then return all dichotomies. Otherwise,
return the Borda winners, in the sense of returning
{D{x}: x is a Borda winner}. By case analysis, one can
check that this rule satisfies reinforcement. Notice that it
does not satisfy reversal symmetry.

The last example implies that, in our main result, we cannot
weaken the quasi-Condorcet property to cancellation.

9 Conclusions and Future Work

We have presented a characterization of the Borda mean
rule as a social dichotomy function, showing that it fills the
same space as does Kemeny’s rule among social preference
functions. It would be interesting to see other social dichotomy
functions discussed in the literature. For example, one might
consider mean rules based on other positional scoring rules or



Copeland scores. (Lang et al. 2016) propose a version of the
Ranked Pairs rule that returns dichotomies, and (Kilgour 2016)
proposes some multiwinner voting rules with committees of
variable size, which can be interpreted as social dichotomy
functions. For now, the Borda mean rule seems like a very
attractive example of an social dichotomy function.

Several questions remain for future work. Is there an
alternative proof of our characterization that does not need
linear algebra, such as in the proof of Hansson and Sahlquist
(1976) for Borda’s rule and of Debord (1992) for the k-Borda
rule? (See Remark 8.) We can also ask whether the Borda
mean rule can be characterized using different axioms. It
seems particularly desirable to replace the quasi-Condorcet
property with a more intuitive axiom. For example, does our
result still hold if we were to replace the quasi-Condorcet
property with the conjunction of cancellation and reversal
symmetry? Or if we replace it with cancellation together with
the requirement that Condorcet winners are always approved
and Condorcet losers are always disapproved? These results
are not ruled out by our examples in Section 8; to establish
them, one would only need to reprove the conclusion of
Lemma 9.

Acknowledgements This paper was partly written while the
authors visited Carnegie Mellon University. We thank our host
Ariel Procaccia, and COST Action IC1205 on Computational
Social Choice for support. We thank Bill Zwicker and Piotr
Skowron for helpful discussions.

References

Barthélemy, J. P., and Janowitz, M. F. 1991. A formal
theory of consensus. SIAM Journal on Discrete Mathematics
4(3):305-322.

Chamberlin, J. R., and Courant, P. N. 1983. Representa-
tive deliberations and representative decisions: Proportional

representation and the Borda rule. The American Political
Science Review 77(3):718-733.

Chebotarev, P. Y., and Shamis, E. 1998. Characterizations
of scoring methods for preference aggregation. Annals of
Operations Research 80:299-332.

Debord, B. 1987. Caractérisation des matrices des préférences
nettes et méthodes d’agrégation associées. Mathématiques et
sciences humaines 97:5-17.

Debord, B. 1992. An axiomatic characterization of Borda’s
k-choice function. Social Choice and Welfare 9(4):337-343.

Dietrich, F. 2014. Scoring rules for judgment aggregation.
Social Choice and Welfare 42(4):873-911.

Duddy, C.; Houy, N.; Lang, J.; Piggins, A.; and Zwicker,
W. S. 2014. Social dichotomy functions. Working paper.
Duddy, C.; Piggins, A.; and Zwicker, W. S. 2016. Aggregation

of binary evaluations: a Borda-like approach. Social Choice
and Welfare 46(2):301-333.

Faliszewski, P.; Skowron, P.; Slinko, A.; and Talmon, N. 2017.
Multiwinner voting: A new challenge for social choice theory.
In Endriss, U., ed., Trends in Computational Social Choice.
chapter 2.

Faliszewski, P.; Slinko, A.; and Talmon, N. 2017. The com-
plexity of multiwinner voting rules with variable number of
winners. Technical report, https://arxiv.org/abs/1711.06641.

Fishburn, P. C. 1977. Condorcet social choice functions.
SIAM Journal on Applied Mathematics 33(3):469-489.

Girdenfors, P. 1973. Positionalist voting functions. Theory
and Decision 4(1):1-24.

Hansson, B., and Sahlquist, H. 1976. A proof technique for
social choice with variable electorate. Journal of Economic
Theory 13(2):193-200.

Kemeny, J. G. 1959. Mathematics without numbers. Daedalus
88:577-591.

Kilgour, D. M. 2016. Approval elections with a variable
number of winners. Theory and Decision 81(2):199-211.

Lackner, M., and Skowron, P. 2017. Consistent
approval-based multi-winner rules.  Technical report,
https://arxiv.org/abs/1704.02453.

Lang, J.; Monnot, J.; Slinko, A.; and Zwicker, W. S. 2016.
Beyond electing and ranking: Collective dominating chains,
dominating subsets and dichotomies. In Proceedings of the

16th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 24-32. IFAAMAS.

McMorris, F. R.; Mulder, H. M.; and Powers, R. C. 2000. The
median function on median graphs and semilattices. Discrete
Applied Mathematics 101(1):221-230.

Monroe, B. L. 1995. Fully proportional representation. The
American Political Science Review 89(4):925-940.

Niou, E. M. S. 1987. A note on Nanson’s rule. Public Choice
54:191-193.

Skowron, P.; Faliszewski, P.; and Slinko, A. 2016. Axiomatic
characterization of committee scoring rules. In Proceedings
of the 6th International Workshop on Computational Social
Choice (COMSOC).

Smith, J. H. 1973. Aggregation of preferences with variable
electorate. Econometrica 41(6):1027-1041.

Tideman, T. N. 1987. Independence of clones as a criterion
for voting rules. Social Choice and Welfare 4(3):185-206.
Young, H. P., and Levenglick, A. 1978. A consistent extension
of Condorcet’s election principle. SIAM Journal on Applied
Mathematics 35(2):285-300.

Young, H. P. 1974a. An axiomatization of Borda’s rule.
Journal of Economic Theory 9(1):43-52.

Young, H. P. 1974b. A note on preference aggregation.
Econometrica 42(6):1129-1131.

Young, H. P. 1975. Social choice scoring functions. SIAM
Journal on Applied Mathematics 28(4):824-838.

Young, H. P. 1988. Condorcet’s theory of voting. The
American Political Science Review 82(4):1231-1244.
Young, H. P. 1995. Optimal voting rules. Journal of Economic
Perspectives 9(1):51-64.

Zwicker, W. S. 1991. The voter’s paradox, spin, and the
Borda count. Mathematical Social Sciences 22(3):187-227.
Zwicker, W. S. 2016. Cycles and intractability in social choice
theory. Technical report, https://arxiv.org/abs/1608.03999.



