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Abstract

In this paper, we extend the Top-Trading-Cycles (TTC) mech-
anism to housing markets with acceptable bundles. We pro-
pose Conditionally-Most-Important trees (CMI-trees) as a
new language that generalizes commonly-studied languages
such as generalized lexicographic preferences and LP-trees.
Our main result is that for any instance of housing markets
with acceptable bundles, and any CMI-tree profile, if TTC
outputs an acceptable full allocation, then TTC is strict core
selecting, non-bossy and indifferent to the order of imple-
menting cycles as they become available.
We propose multi-type housing markets with size constraints
as a generalization of multi-type housing markets (Moulin
1995; Sikdar, Adali, and Xia 2017) and the setting of Fujita
et al. (2015), and show that our extension of TTC always out-
puts an acceptable full allocation. Finally, we show that TTC
is computationally hard to manipulate in this setting.

1 Introduction
Shapley and Scarf (1974)’s housing markets are an impor-
tant model of exchange economies. In a housing market,
there are multiple agents, each initially endowed with some
indivisible items and preferences over bundles of items. The
goal is to design a mechanism without money to re-allocate
the items. One prominent example is kidney exchange (Roth,
Sonmez, and Unver 2004), where each recipient/donor pair
is modeled as an agent, who initially owns a kidney (from
the donor) and wants a new kidney (for the recipient).

When each agent is initially endowed with a single item
and agents’ preferences are linear orders over all items,
Gale’s Top-Trading-Cycles (TTC) mechanism (Abdulka-
diroğlu and Sönmez 1999) satisfies many desirable prop-
erties. For example, it satisfies core-selection and strategy-
proofness, and runs in polynomial time. Core-selection re-
quires that the outcome of the mechanism must be in the
core, which is the set of allocations where no group of agents
has an incentive to deviate by reallocating their initial en-
dowments. Strategy-proofness requires that no agent has in-
centive to misreport preferences to obtain a better outcome.

However when some agents initially own multiple items,
the problem becomes much more challenging as no mech-
anism satisfies both core-selection and strategy-proofness
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in such cases as proved by Sönmez (1999). There have
been some recent positive developments on core-selecting
mechanisms under natural assumptions on agents’ prefer-
ences with certain constraints on the final allocation. For
example, Fujita et al. (2015) extend TTC under the assump-
tion of lexicographic preferences, where each agent is al-
located as many items as their initial endowment. Sikdar,
Adali, and Xia (2017) extend TTC to multi-type housing
markets (Moulin 1995) where each agents’ initial endow-
ment and final allocation consists of exactly one item of each
type, under the assumption that agents’ preferences are rep-
resented by lexicographic extensions of CP-nets.

We address the following questions: To what extent, and
under what assumption on agents’ preferences, can TTC be
extended to housing markets with constraints on the final
allocation? What properties does the extended TTC satisfy?
Our Contributions. We propose a general framework
called housing markets with acceptable bundles (HMAB),
which is more general than previous works (Fujita et al.
2015; Moulin 1995; Sikdar, Adali, and Xia 2017). An
HMAB is denoted by (M,D), whereM is a housing mar-
ket where each of n agents may initially own multiple items
and have preferences over bundles. Each agent j ≤ n has a
set of acceptable bundles Dj , and an acceptable allocation
is a member of D = D1 × · · · ×Dn.

We propose a new graphical language to represent prefer-
ences called conditionally-most-important (CMI) trees that
extends several popular languages studied in previous work,
as we show in Section 4. In a CMI-tree V , each node is la-
beled with an item, and each directed edge points to the next
most-important item, conditioned on whether items along
the path are allocated to the agent. Given any partial allo-
cation of items, an agent either has a unique most important
item that she desires, or is indifferent between all extensions
of the partial allocation.

We extend the TTC mechanism to HMABs when agents’
preferences are represented by CMI-trees with possibly dif-
ferent structures. At each round of the algorithm, each re-
maining agent points at her (unique) most important item
conditioned on the partial allocation computed so far, and
every item points at its initial owner. The algorithm then im-
plements all cycles formed in the current round by assigning
to agents involved in a cycle the items they were pointing at.

We show that for any HMAB (M,D), and any CMI-



profile P , if TTC(P ) is an acceptable full allocation i.e.
TTC(P ) ∈ D, and every item is either allocated to
some agent, or cannot extend any agents’ allocation, then
(1) TTC(P ) is in the strict core (Theorem 1), (2) the cycles
can be implemented one by one (instead of implementing
all cycles in each step) in any order when they are available
(Theorem 2), (3) TTC is non-bossy at P (Theorem 3).

Here a strict core allocation means that no group has in-
centive to deviate and exchange their initial endowments to
get a better acceptable allocation. Non-bossiness means that
no agent can misreport her preferences to change the alloca-
tion of any other agent without changing her own allocation.
How useful are these results? Theorems 1–3 discussed
above are quite general and positive. They can be applied
to any housing market with any acceptable bundles under
the relatively weak assumption of CMI-tree preferences.

First, if we can show that the output of TTC is always an
acceptable full allocation, then it immediately implies that
TTC is strict core-selecting, insensitive to the order of im-
plementing cycles one by one, and non-bossy. To give an ex-
ample of such settings, we introduce a new problem, multi-
type housing markets with size constraints, that combines
and generalizes the two settings from previous works (Fujita
et al. 2015; Sikdar, Adali, and Xia 2017).

In this new setting, there are multiple types of items,
agents may be endowed with multiple items of each type,
and agents only accept bundles that contain as many items
of each type as their initial endowment. We show that under
CMI-profiles that are linear orders over acceptable bundles,
TTC always outputs an acceptable full allocation. We also
show that computing a beneficial misreport under TTC is
NP-hard.

Second, even for problems for which the output of TTC
is not always an acceptable full allocation, the three theo-
rems still guarantee desirable properties of TTC for “good”
instances.

Related Work and Discussions. We are not aware of pre-
vious work that explicitly formulates acceptable bundles as
we do in this paper. The acceptable bundles can be seen as
soft constraints on the allocation. We do not aim to design a
mechanism that always outputs an acceptable full allocation.
Instead, we prove that TTC has good theoretical guarantees
when the output is an acceptable full allocation.

Our work is related to the literature on matching with
constraints (see (Kojima 2015) for a recent survey), where
there are two sets of agents, and the goal is to find a sta-
ble matching of agents from opposite sides where no pair
of agents has an incentive to deviate. Constraints may be in
the form of agents specifying acceptable matchings, or quo-
tas on how many other agents a given agent can be matched
with (Fragiadakis et al. 2016). In this paper, we are inter-
ested in the resource allocation problem where preferences
are one sided, i.e. agents have preferences over items, and
the solution concept is that of core stability.

A natural extension of the standard housing markets set-
ting is that agents own and desire multiple items (Pápai
2007; Todo, Sun, and Yokoo 2014; Sonoda et al. 2014;
Fujita et al. 2015; Sun et al. 2015; Sikdar, Adali, and Xia

2017). Konishi, Quint, and Wako (2001) showed that the
core may be empty even when agents’ preferences are ad-
ditively separable. However, two lines of work provide core
selecting mechanisms under certain restrictions:

(1) When there is a single type and agents may own multi-
ple items, the ATTC mechanism by Fujita et al. (2015) is
strict-core selecting under lexicographic preferences and
allocates exactly as many items as agents’ endowments.

(2) In multi-type housing markets (Moulin 1995), agents are
endowed with, and must be allocated bundles containing
exactly one item per type. Sun et al. (2015) assume sepa-
rable lexicographic preferences with common importance
orders. Under preferences that are represented by lexico-
graphic extensions of CP-nets (Boutilier et al. 2004) with
possibly different importance orders, the MTTC mech-
anism by Sikdar, Adali, and Xia (2017) is strict core-
selecting and non-bossy.

Multi-type housing markets with size constraints combine
and generalize these two settings. Therefore, Theorems 1–3
also apply to every instance of each of these problems under
CMI-profiles that are linear orders over acceptable bundles,
which is a weaker assumption than in previous works as we
will show later. Aside from the standard TTC, the MTTC
mechanism (Sikdar, Adali, and Xia 2017), and ATTC mech-
anisms (Fujita et al. 2015) are special cases of our extension
of TTC. Theorems 2 and 3 are new to ATTC to the best of
our knowledge. The NP-hardness of computing a beneficial
misreport provides a computational barrier against agents’
strategic behavior under TTC, similar to the idea of using
computational complexity to protect elections (Bartholdi,
Tovey, and Trick 1989; Conitzer and Walsh 2016).

Our setting is related to the work on housing markets
with indifferences (Quint and Wako 2004; Yilmaz 2009;
Alcalde-Unzu and Molis 2011; Jaramillo and Manjunath
2012; Aziz and de Keijzer 2012; Plaxton 2013; Saban and
Sethuraman 2013) which assume that agents own and ac-
cept a single item and their preferences can be any weak
order over the items. Therefore, their results do not directly
apply to our setting where agents can be allocated multiple
items. On the other hand, our results do not directly apply to
the setting of these works since not all weak orders can be
represented by CMI-trees.

Domain Restriction on Preferences. CMI-trees are more
general, and impose a weaker restriction on agents’ prefer-
ences than the assumptions of previous works such as lex-
icographic extensions of CP-nets (Sikdar, Adali, and Xia
2017), LP-trees (Booth et al. 2010), and GLPs (Monte and
Tumennasan 2015). We look at the relationship with other
languages in more detail in Section 4.

2 Preliminaries
A housing market with acceptable bundles (HMAB), de-
noted by M, is given by a tuple (N , I,O), where N =
{1, . . . , n} is a set of agents, I is a set of indivisible items,
and for each j ≤ n,O(j) ⊆ I denotes agents’ initial endow-
ments that are disjoint. For any j ≤ n, let Dj ⊆ 2I denote
agent j’s acceptable bundles and D = D1 × · · · ×Dn.



A partial allocation A is a function that maps each agent
j to a pair of non-overlapping sets of items. For any j ≤ n,
A(j) = (Ij , Fj), where Ij ∩ Fj = ∅. Ij and Fj denote the
sets of items assigned and denied to j respectively. When
Ij ∪ Fj = I for every j ≤ n, the allocation is called a full
allocation. We often use A = (I, F ) to refer to partial allo-
cations, where I = (Ij)j≤n and F = (Fj)j≤n. A (partial)
allocation A′ defined by pairs (I ′j , F

′
j) for every j ≤ n, is an

extension of partial allocation A, if for every j ≤ n, Ij ⊆ I ′j
and Fj ⊆ F ′j . An allocation A is acceptable if A ∈ D.

Given an agent j’s acceptable bundles Dj , a partial allo-
cation (Ij , Fj) is acceptable to j, if it has an extension to an
allocation (I ′j , F

′
j) such that I ′j ∈ Dj . An item o is allow-

able for agent j given Dj and (Ij , Fj), if o /∈ Ij ∪ Fj and
(Ij ∪ {o}, Fj) is acceptable. Otherwise o is denied. Exam-
ple 1 illustrates acceptable allocations and allowable items.

A preference profile is a collection of agents’ preferences.
Given an HMAB (M,D), a mechanism f is a function that
maps agents’ profile P to a (partial) allocation.
Axiomatic Properties. In this work, we are interested in the
following desirable axiomatic properties. A mechanism f
is (a) Individually Rational if for any profile P , no agent
prefers her initial endowment to her allocation in f(P ).
(b) Pareto optimal if for any profile P , there does not exist
an allocation A such that (i) every agent weakly prefers her
allocation inA to her allocation in f(P ), and (ii) some agent
strictly prefers her allocation in A to her allocation in f(P ).
(c) Non-bossy if for every profile P , no agent can change
another agent’s allocation by misreporting her preferences,
without also changing her own allocation. (d) Strict Core
Selecting if for every profile P , there is no coalition which
weakly blocks f(P ). A coalition of agents S ⊆ N weakly
blocks an allocation A, if there is a reallocation B of items
initially endowed to agents in S, such that (i) every agent in
S weakly prefers her allocation in B to her allocation in A,
and (ii) some agent in S strictly prefers her allocation in B
to her allocation in A.

3 Multi-Type Housing Markets with Size
Constraints

In a multi-type housing market with size constraints, there is
a setN of n agents and p types of items. For each type i ≤ p,
Ti denotes items of type i, and I = T1∪· · ·∪Tp. Each agent
j ≤ n is endowed with a non-empty subset of items O(j),
and for every type i, let [O(j)]i ⊆ Ti denote agent j’s possi-
bly empty endowment of type i. Agents only accept bundles
containing exactly as many items of each type as their en-
dowments, i.e. Dj = {B : for every type i ≤ p, |[B(j)]i| =
|[O(j)]i|}. Let DMS = D1 × · · · × Dn, and MMS =
(N , I,O). Multi-type housing markets with size constraints
are a special case of HMABs, (MMS,DMS).

Example 1. Consider the multi-type housing market with
size constraints with 2 types H = {1H , 1′H , 2H} and C =
{1C , 2C , 2′C}, and 2 agents with initial endowmentsO(1) =
{1H , 1′H , 1C} andO(2) = {2H , 2C , 2′C}. Consider the par-
tial allocation (I1, F1) = ({1H , 1C}, {1′H , 2′C}) to agent 1.
The item 2H is allowable and 2C is denied. (I1, F1) can be

extended by adding 2H to I1 or 2C to F1 or both, but every
other extension is unacceptable.

In a multi-type housing market (Moulin 1995), agents are
initially endowed with and only accept bundles with exactly
one item per type. In the setting of Fujita et al. (2015), there
is a single type, and agents may own multiple items.

4 Conditionally-Most-Important (CMI)
Preferences

Conditionally-Most-Important (CMI) preferences are repre-
sented by a tree defined below.
Definition 1. Given I, a CMI-tree V is defined as follows.
• Every node d is labeled with an item label(d) ∈ I.
• Every item appears at most once on every branch.
• Every non-leaf node has either one outgoing edge labeled
{0, 1} or two outgoing edges labeled 0 or 1.

If each node in V only has one outgoing edge, then V is
said to be unconditional. For any node d, let Anc(d) denote
the set of all ancestor nodes of d. Let PathV (d) denote the
path from root to d. Let Absent(d) (respectively, Present(d))
denote the set of all items labeling Anc(d) with outgoing
edges labeled 0 (respectively, 1) along PathV (d).
Semantics. Given a CMI-tree, each node d has the follow-
ing meaning: given that the agent is allocated all items in
Present(d) and all of the items in Absent(d) are denied in a
given partial allocation, any bundle which contains the item
label(d) is more preferred than any bundle without label(d).
We therefore call item label(d) the agent’s most important
item conditioned on items Present(d) and Absent(d) being
present and absent respectively, in the partial allocation.

Comparing a pair of bundlesB1, B2 ⊆ I involves travers-
ing the CMI-tree from the root, following outgoing edges
labeled 0 or 1, depending on whether the item label(d) la-
beling the current node is absent from or present in both B1

and B2, until a node d∗ is encountered such that label(d∗) is
present in only one of the bundles. Such a node d∗ is said to
decide the preference relation in favor of the bundle that in-
cludes the item label(d∗). If no decision node is encountered
then the agent is indifferent between B1 and B2.

A CMI-profile P = (V1, . . . , Vn) is a collection of agents’
preferences where each Vj is agent j’s CMI-tree preferences
over 2I . A CMI-tree is said to be a strict CMI-tree over a
set of bundles B if it induces a linear order over B. Given
an HMAB (M,D), a profile P is a strict CMI-profile if for
every agent j, Vj is a strict CMI-tree overDj . Given a partial
allocation A = (I, F ), we use Vj |(Ij ,Fj) to denote agent
j’s most important item, conditioned on items in Ij being
present, and items in Fj being absent in every bundle.
Example 2. Consider the CMI-profile in Figure 1, the multi-
type housing market with size constraints from Example 1,
and the partial allocation of (I2, F2) = ({2H}, {1H , 2C})
to agent 2. Agent 2’s conditionally most important item,
V2|(I2,F2) = 1C , can be computed by following the edges
corresponding to 1H being denied, 2H being assigned, and
2C being denied. Agent 2’s preference over acceptable bun-
dles is [1H1C2C � 1H1C2

′
C � 1H2C2

′
C � 2H2C1C �

2H2C2
′
C � 2H1C2

′
C � 1′H1C2C � 1′H1C2

′
C � 1′H2C2

′
C ].



Figure 1: A CMI-profile with two agents and two types
H = {1H , 1′H , 2H} and C = {1C , 2C , 2′C}. Agent 2’s pref-
erences can be represented by an LP-tree with type labels
for multi-type housing markets (Moulin 1995).

Comparing bundles 1H1′H2C and 1H1′H2′C according to
agent 2’s preferences is performed by following edges corre-
sponding to 1H being present, and 1C being absent in both
the bundles to reach the node labeled 2C . Now, 2C is the
most important item and decides the pairwise relationship in
favor of 1H1′H2C .

CMI-Trees Generalize Other Languages in Multi-Type
Housing Markets (Moulin 1995). We start by showing that
CMI-trees are a strict generalization of two important pref-
erence languages:
(1) LP-trees with type labels (Booth et al. 2010) which are
given by a tree V where each node v is labeled with a type
type(v), and a conditional preference table CPT (v), and
outgoing directed edges from each non-leaf node are labeled
by the items of type(v), such that each item in type(v) labels
exactly one outgoing edge of v. Each type appears once, and
only once on every branch of V . CPT (v) is composed of
local preferences over items of type(v), conditioned on the
allocation of each of the items of the type corresponding to
the parent node of v in V .
(2) Generalized lexicographic preferences (GLPs) (Monte
and Tumennasan 2015) which are represented by a linear
order η over I. Given any pair ~a,~b ∈ 2I , ~a � ~b if and only
if there is an item o in ~a but not in~b, and all items preferred
to o in η are either in both ~a and~b, or in neither.

Example 3. For multi-type housing markets, agent 2’s pref-
erences in Figure 1 can be represented as an LP-tree as
shown. Agent 1’s preferences in Figure 1 realizes the GLP
with η = [1C � 2′C � 2H � 1H � 2C � 1′H ].

Proposition 1. LP-trees with type labels and GLPs are strict
subsets of strict CMI-trees.

Proof sketch. It is easy to check that we can model any GLP
or LP-tree with type labels as a CMI-tree. We provide exam-
ples to prove that LP-trees with type labels and GLPs are a

strict subset of CMI-trees. (1) and (2) show that not every
GLP can be represented by an LP-tree with type labels and
vice versa, and (3) Not every CMI-tree can be represented
by either an LP-tree with type labels or a GLP.

(1) Consider the GLP given by η = [1H � 1C � 2C �
2′C � 2H � 1′H ]. An LP-tree would need to have H as most
important type with preferences [1H � 2H � 1′H ] which
cannot represent the relation [1′H1C � 2H2C ] by the GLP.

(2) It is easy to see that no GLP can represent agent 2’s
LP-tree preferences over H × C in Figure 1 which induces
the order [1H1C � 1H2C � · · · � 2H2C � 2H1C � . . . ].

(3) By a similar reasoning to the two examples above, we
can verify that the CMI-tree in Figure 2 with bundle pref-
erences [1H1C � 1H2C � 1H2′C � 2H2C � 1′H2C �
2H1C � 1′H1C � 2H2′C � 1′H2′C ] over H × C can neither
be represented by an LP-tree with type labels, nor a GLP. �

Figure 2: A CMI-tree over 2 types H and C.

Relationship with LP-trees with item labels.An LP-tree
with item labels is represented by a tree, where every node
v is labeled by an item item(v), each item is treated as a
binary variable, and the local preferences specify whether it
is preferred that the item labeling the node is present (1 � 0)
or absent (0 � 1) from a bundle. Since each item appears
once, and only once on every branch, this induces a linear
order over 2I , unlike LP-trees with type labels where the
preferences over bundles with multiple items of a type may
not be well defined. We say that an LP-tree with item labels
is monotonic if for every node v, CPT (v) = 1 � 0, i.e.
being assigned an item is always preferred. Otherwise, it is
non-monotonic.
Proposition 2. (1) Strict CMI-trees over 2I are equivalent
to monotonic LP-trees with item labels, and (2) CMI-trees
cannot represent the preferences of any non-monotonic LP-
tree with item labels over 2I .
Proof sketch. (1) Constructing a monotonic LP-tree with
item labels that represents a strict CMI-tree is as follows.
We start with an LP-tree with the same nodes and edges (as
well as labels) as the CMI-tree, and populate the local CPTs
with 1 � 0. For every leaf node, if the path from root to
node does not involve all items, we iteratively add outgo-
ing edges labeled 0, 1 and nodes labeled by the remaining
items as children one by one in arbitrary order. Constructing
a CMI-tree to represent a monotonic LP-tree is trivial.

(2) For every non-monotonic LP-tree V with item labels,
there must be a pair of bundles B1, B2 such that there is a
single item o which is absent in B1 and present in B2, and
every other item is either present or absent in both B1 and
B2, and B1 � B2 according to V . However, comparing B1

and B2 according to any strict CMI-tree V̂ corresponds to a
path in V̂ involving a node labeled with o which decides the
pairwise preference relation as B2 � B1. �



Figure 3 illustrates the relationship between CMI-trees,
GLPs, LP-trees with type labels, and LP-trees with item la-
bels.

Figure 3: Relationship between popular preference lan-
guages (Propositions 1 and 2).

Relationship with CI-nets (Bouveret, Endriss, and Lang
2009). In a CI-net, preferences are expressed as a collec-
tion of CI-statements where conditioned on some items be-
ing present and some other items being absent, one set of
items is specified to be more important than another. Given a
CI-statement (S+, S−, S1, S2), comparisons between pairs
of bundles where one contains all items in S1, and the other
contains all items in S2, and both bundles contain all items
in S+ and the same items from I\(S1∪S2), and none of the
items in S−, are decided in favor of the bundle containing
items of S1. This induces a partial order over bundles. Ev-
ery CMI-tree may be expressed by CI-statements. However
such a representation may not be compact. For example, the
CMI-tree over items {1H , . . . ,mH} with one node labeled
with 1H as the most important item needs an exponential
number of CI-statements to represent.
Properties of CMI-trees. CMI-trees are compact in the
same way that LP-trees are compact. The size of the rep-
resentation and time taken to compute most important items
may depend on the amount of branching in the CMI-tree.
Importantly, they can be compact for special cases such as
when they represent the same preferences as an LP-tree or
GLP. We note that computing the most important item and
deciding pairwise comparisons can be performed with poly-
nomial number of queries for the next conditionally most
important item. This can be done efficiently for the special
cases where CMI-trees are compact. Also, note that TTC
only requires knowledge of agents’ most important items
at each round, instead of requiring agents to formulate and
communicate full preferences a priori. Our next proposition
is that CMI-trees induce a weak order over bundles, with no
incomparabilities.

Proposition 3. Given any CMI-tree V and any D ⊆ 2I , the
restriction of V to D is a weak order over D.

Proof sketch. The idea is that each decision node in the tree
partitions the set of all bundles that are indistinguishable so
far into two sets: a more preferred set (following the edge
labeled with 1), and a less preferred set (following the edge
labeled with 0). Any two bundles that cannot be separated
by any node must belong to the same equivalence class. �

Not all linear orders can be represented by CMI-trees. For

example, no CMI-tree can represent 1H � 1H2H � 2H
over D = {1H , 2H , 1H2H}.

5 Housing Markets with Acceptable Bundles
Given a housing market with acceptable bundles (M,D),
for any CMI-profile P = (V1, . . . , Vn), where each Vj is a
CMI-tree, we propose an extension of TTC in Algorithm 1.

Algorithm 1 TTC with output constraints for CMI-profiles.
1: Input: (M,D) and a CMI-profile P .
2: t ← 1. N t ← N , It ← I. Let Gt = (N t ∪ It, ∅). For

each j ≤ n, let Itj = F t
j = ∅.

3: while at least one agent remains in N t do
4: Identify most important item ôj in polynomial time.

For every agent j in N t, do the following:
4.1 Let o = Vj |(It

j ,F
t
j )

.

4.2 If o is denied or removed, add o to F t
j and update

o = Vj |(It
j ,F

t
j )

, until o is allowable or no item is left.

4.3 If an allowable item o is found, then we let ôj = o,
otherwise we let ôj = null.

5: Build the graph Gt = (N t ∪ It, E). For every agent
j in N t, do the following:

5.1 For every item o ∈ O(j)∩It, add edge (o, j) to E.
5.2 If ôj 6= null, add edge (j, ôj) to E.

6: Implement cycles. For each cycle C, for every (j, ôj)
in C, add ôj to Itj and remove ôj from It.

7: For all agents j with no outgoing edge in Gt, remove
j from N t and remove items in O(j) ∩ It from It.

8: N t+1 ← N t. It+1 ← It. For every agent j ∈ N ,
(It+1

j , F t+1
j )← (Itj , F

t
j ). Set t← t+ 1.

9: end while
10: Output: The allocation A = ((Itj , F

t
j )j∈N ).

At each round of the algorithm, the remaining agents
point to their most important allowable item that remains,
and each remaining item points to its initial owner. Every
node in the corresponding graph has an out-degree of exactly
1, so a cycle is guaranteed to exist. TTC proceeds by imple-
menting all available cycles at each round, by assigning to
agents involved in each cycle, the item they were pointing at,
updating the partial allocations, and removing the assigned
items. At any round t of the algorithm, for any agent j, the
partial allocation (Itj , F

t
j ) = (Present(d),Absent(d)) is used

to represent PathVj
(d), where label(d) = Vj |(It

j ,F
t
j )

repre-
sents the most important item that is under consideration. If
an agent does not have any allowable item that remains, she
is removed.

Example 4. Figure 4 is an example of a run with the CMI-
profile in Figure 1 as input for a multi-type housing market.
Only Itj’s are shown. Computation of most important items
(darker circle), by following the dashed nodes and edges, are
shown for agent 1 at t2 and agent 2 at t3.



Figure 4: A run of TTC for the multi-type housing market with size constraints from Example 1 and preferences in Figure 1.

Theorem 1. For any HMAB (M,D) and any CMI-profile
P , if TTC(P ) is an acceptable full allocation then it is in the
strict core.

Proof. For the sake of contradiction, suppose that the alloca-
tion A = TTC(P ) is an acceptable full allocation and does
not belong to the strict core. Then, there exists a coalition S
and an acceptable allocationB = (IB , FB) on S that blocks
A, i.e. that every agent in S weakly prefers B to A, and at
least one agent in S strictly prefers B to A. Let t∗ be the
first round in Algorithm 1 when the partial assignments at
the end of the round for agents in S are not compatible with
B, by which we mean that there exists an agent j ∈ S such
that either It

∗

j 6⊆ IBj , or F t∗

j ∪ IBj 6= ∅. We can ignore the
case where A is a partial allocation because an agent was re-
moved in Step 7. We note that It

∗

j and F t∗

j are updated only
at Steps 4 and 6. Therefore, there exists j ∈ S such that at
least one of the following cases hold:
(1) Denied item in Step 4. j skips a denied item that is

assigned to her in B.
(2) Conflict in It

∗

j in Step 6. j is assigned an item absent
in B(j).

(3) Removed item in Step 4. j’s item is allocated to a dif-
ferent agent in A than in B in the previous round.

Suppose Case (1) holds and j is denied from getting item
o in Step 4.2 of Algorithm 1, but o ∈ B(j). Immediately
before o is added to F t∗

j , we have that (B(j), I − B(j))

is an extension of (It
∗

j , F
t∗

j ). Because o is denied, we must
have that B(j) is unacceptable, which is a contradiction.

Suppose Case (2) holds and j is assigned oA in Step 6.
Therefore, oA is j’s most important item given (It

∗

j , F
t∗

j ).
We note that by assumption, Step 6 in round t∗ is the first
moment when (It

∗

j , F
t∗

j ) is incompatible with B(j). There-
fore, right before oA is assigned to j, (B(j), I − B(j))
is an extension of (It

∗

j , F
t∗

j ). This means that all items in

(B(j)− It∗j ) must be allowable at this point. By the defini-
tion of CMI-tree, we have A(j) �j B(j), a contradiction.

Case (3) can be reduced to Case (2) by considering the cy-
cle involving j in the previous round. There must be an agent
ĵ in S who gets a different item in the cycle from B(ĥ).

This means that since A is a full allocation, it is impossi-
ble that an agent in S gets a different allocation in B.

Our next theorem states that if TTC(P ) is acceptable, then
the order of implementing cycles in the execution of TTC
does not matter. We begin by defining a class of algorithms
called TTC∗ for CMI-profiles similar to (Sikdar, Adali, and
Xia 2017), each of which implements one trading cycle per
round. There can be multiple TTC∗ algorithms.

Definition 2. Given an HMAB (M,D) and a CMI-profile
P , let TTC∗P denote the set of algorithms, each of which is a
modification of TTC (Algorithm 1), where instead of imple-
menting all cycles in each round, the algorithm implements
exactly one available cycle in each round.

We note that TTC∗P depends on P . Each algorithm A ∈
TTC∗P is represented by a linear order Order(A) = C1 �
· · · � Ck, where for any t ≤ k, A implements Ct in round
t. Order(TTC∗P ) = {Order(A) : A ∈ TTC∗P }.
Definition 3. For any HMAB (M,D) and any CMI-profile
P , let Cycles(P ) denote the set of cycles implemented in the
execution of TTC on P . We define a partial order PO(P )
over Cycles(P ) as follows. For every pair of cycles Ck, Cl,
we let Ck � Cl in PO(P ) if the following conditions hold:
Conditions. There is an agent j in Cl and an item o in
Ck such that o is earlier than Cl(j) in PathVj (TTC(P )(j)),
and o is allowable given the subpath from root to o in
PathVj (TTC(P )(j)).

PO(P ) is the transitive closure of the binary relations
mentioned above. We use Ext(P ) to denote the set of linear
orders that extend PO(P ).



The condition is used to guarantee that when all cycles
ahead of Cl in Cycles(P ) are removed, the graph by any
TTC∗P algorithm contains Cl. We are now ready to present
the key lemma that establishes the equivalence between
TTC∗P andExt(P ), which immediately leads to Theorem 2.
Lemma 1. For any HMAB (M,D) and any CMI-profile
P , if TTC(P ) is an acceptable full allocation, then
Order(TTC∗P ) = Ext(P ).
Proof sketch. The full proof is provided in the appendix.
⊇: We prove that for every W ∈ Ext(P ), there exists a
TTC∗P algorithm A that implements cycles exactly as in W
by contradiction. Suppose that W = C1 � · · · � Ck and
that there exists A ∈ TTC∗P where the first h− 1 cycles are
exactly C1, . . . , Ch−1, but there is no mechanism in TTC∗P
where the first h cycles are C1, . . . , Ch. The proof proceeds
by first showing that Ch is a cycle in the graph Gh in Step 5
of round h. Next, we show that there must exist a mechanism
in TTC∗P that implements Ch in round h by contradiction.
⊆: Suppose for the sake of contradiction that there exists
A ∈ TTC∗P , such that Order(A) /∈ Ext(P ). W.l.o.g. let
Order(A) = [C1 � · · · � Ch−1 � C∗h � · · · ], and there
is some L ∈ Ext(P ) that agrees with Order(A) with the or-
der of the top h − 1 elements (cycles), but no L̂ ∈ Ext(P )
that agrees with the order of the top h cycles. W.l.o.g. let
L = [C1 � · · · � Ck], where Ch 6= C∗h. By the ⊇ direc-
tion, there exists AL ∈ TTC∗P such that Order(AL) = L.
The proof relies on establishing that C∗h ∈ Gh and C∗h ∈
{Ch+1, . . . , Ck}, because Gh is the graph at the beginning
of round h in both A and AL. �

Theorem 2. For any HMAB (M,D) and any CMI-profile
P , if TTC(P ) is an acceptable full allocation, then the
output of every TTC∗P algorithm is the same and equals
TTC(P ).

The last theorem in this section proves that TTC is non-
bossy when TTC(P ) is full and acceptable which follows
from Lemma 2 whose proof relies on Theorem 2. The full
proofs are provided in the appendix.
Lemma 2. For any HMAB (M,D), any CMI-profile P ,
and any agent j, let V̂j denote an unconditional CMI-tree
obtained from Vj by letting TTC(P )(j) to be the most im-
portant items w.r.t. the order they are allocated to j. Then
if TTC(P ) is an acceptable full allocation, we have that
TTC(P ) = TTC(P−j , V̂j).
Proof sketch. The proof is done by examining the execution
of an algorithm in TTC∗P . �

Theorem 3. For any HMAB (M,D), any CMI-profile P , if
TTC(P ) is an acceptable full allocation, then TTC is non-
bossy at P .

TTC(P ) is Always Acceptable For Multi-Type
Housing Markets with Size Constraints.
Proposition 4. For any strict CMI-profile P and any multi-
type housing market with size constraints, (MMS,DMS), we
have that TTC(P ) is a full acceptable allocation.
Proof sketch. A proof by induction shows that the partial
allocation at the end of every round is acceptable. Either an

agent pointed at and was assigned a denied item which is
impossible in TTC, or there is no allowable item that meets
the agents’ demand for some type. The latter case is im-
possible because agents only point to allowable items, and
each agent only demands as many items of each type as they
are endowed with. Then, at the end of each round, the num-
ber of items of each type equals the demand from remaining
agents, so an allowable item is always available. It is easy to
see that the output is a full allocation. Example 4 illustrates
TTC for multi-type housing markets with size constraints. �
Manipulation of TTC in Multi-Type Housing Markets
with Size Constraints. We first show by an example, that
TTC is not necessarily strategy-proof for multi-type hous-
ing markets under CMI-tree preferences. However, as we
show subsequently, computing a beneficial misreport is NP-
complete, for CMI-trees, GLPs, and LP-trees.
Example 5. Consider the multi-type housing market with 4
agents and 2 types {H,C} with the following GLP pref-
erences. Agent 1: 3H � 2C � 1H � 1C � others.
Agent 2: 1H � 2C � 2H � others. Agent 3: 1H �
1C � 3H � 3C � others. Agent 4: 4H � 4C �
others. The TTC allocation for the true preferences is:
(3H , 1C), (2H , 2C), (1H , 3C), (4H , 4C).

However, if agent 1 misreports her preferences as: 4H �
2C � 3H � 1C � others, the resulting allocation by TTC
is: (3H , 2C), (1H , 3C), (2H , 1C), (4H , 4C), which is a ben-
eficial manipulation for agent 1.
Definition 4. (TTC-BENEFICIAL-MISREPORT) Given an
HMAB (M,D), a profile P , and an agent j∗, we are
asked if agent j∗ has a misreport V̂j∗ so that TTC(P̂ =

(V̂j∗ , V−j∗))(j
∗) �Vj∗ TTC(P )(j

∗).
Theorem 4. TTC-BENEFICIAL-MISREPORT in
(MMT,DMT) is NP-complete to compute under GLP,
LP-tree, or CMI preferences.
Proof sketch. We show in the appendix a reduction from
ATTC-BENEFICIAL-MISREPORT for ATTC (Fujita et al.
2015) which is known to be NP-complete.

�

6 Applications and Future Directions
We have extended TTC to HMABs when agents’ prefer-
ences are represented by CMI-trees. We proved that TTC
satisfies some desirable properties when the output is an ac-
ceptable full allocation. We further showed that for multi-
type housing markets with size constraints which combine
the settings of previous works, TTC always computes ac-
ceptable allocations for CMI-profiles. Although TTC may
not be strategy-proof, computing a beneficial manipulation
is NP-hard. Open questions include characterizations of
other properties of the extended TTC under other types of
preferences. How to choose an acceptable allocation when
the output of TTC is unacceptable is also a promising direc-
tion for future research in mechanism design.
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