
Completing the Puzzle: Solving Open Problems for Control in Elections
Gábor Erdélyi and Christian Reger

School of Economic Disciplines
University of Siegen

57072 Siegen, Germany

Yongjie Yang
School of Information Science and Engineering

Central South University
410083 Changsha, China

Chair of Economic Theory
Saarland University

66123 Saarbrücken, Germany

Abstract

We are investigating the computational complexity of elec-
toral control in elections. Electoral control describes the sce-
nario where the election chair seeks to alter the outcome of
the election by structural changes such as adding, deleting,
or replacing either candidates or voters. Such control actions
have been studied in the literature for several prominent vot-
ing rules. In this paper, we complement those results by solv-
ing several open cases for Copelandα , Maximin, k-Veto, Plu-
rality with Runoff, and Veto with Runoff.

1 Introduction
Since the seminal works of Bartholdi et al. (Bartholdi III,
Tovey, and Trick 1989; 1992; Bartholdi III and Orlin 1991),
many strategic voting problems have been proposed and
studied from the complexity theoretic point of view. These
strategic voting problems include manipulation, where vot-
ers cast their votes strategically, bribery, where an external
agent changes some voters’ votes, and control, where an ex-
ternal agent (usually called the chair) tries to alter the out-
come of an election by structural changes such as adding,
deleting, or replacing either candidates or voters. For a broad
overview of these strategic actions, their applications in mul-
tiagent systems, recommender systems, ranking algorithms,
etc., and for a survey of the related results we refer to the
book chapters (Baumeister and Rothe 2015; Faliszewski and
Rothe 2016) and the references cited therein.

In this paper, we will focus on control, in particular on
adding, deleting, and replacing either candidates or vot-
ers. There is a long line of research centered on the com-
plexity of control. Many voting rules have been inves-
tigated, such as Approval Voting and its variants, Con-
dorcet, and Plurality (Bartholdi III, Tovey, and Trick 1992;
Hemaspaandra, Hemaspaandra, and Rothe 2007; Betzler
and Uhlmann 2009; Erdélyi, Nowak, and Rothe 2009;
Erdélyi et al. 2015), Copeland (Faliszewski et al. 2009;
Betzler and Uhlmann 2009), Maximin (Faliszewski, Hemas-
paandra, and Hemaspaandra 2011; Maushagen and Rothe
2016), k-Approval, and k-Veto (Lin 2011; Loreggia et al.
2015). A general (multimode) control problem, allowing an
external agent to perform different types of control actions

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

at once such as deleting and/or adding voters and/or candi-
dates, has been introduced in (Faliszewski, Hemaspaandra,
and Hemaspaandra 2011). The reader may ask, why do we
need yet another paper on the complexity of control? The
answer is, because our knowledge on the complexity of con-
trol is incomplete, there are several voting rules for which
we still have some unsolved open cases. In this paper, we
are filling those gaps. In the following, we will highlight our
contributions:

• Faliszewski et al. (2009) and Loreggia (2012) investigated
the complexity of control in Copelandα elections leaving
the case destructive control by replacing voters for any α ,
0≤ α ≤ 1 open. We solve this open problem.

• Faliszewski et al. (2011) and Maushagen and
Rothe (2016) investigated the complexity of control
in Maximin elections, leaving the cases constructive
and destructive control by replacing either candidates
or voters open. We solve these problems, moreover, we
solve a more general problem called exact destructive
control by adding and deleting candidates, a special form
of multimode control.

• Lin (2011) and Loreggia et al. (2015) focused on control
in k-Veto. Open cases are k-Veto constructive control by
replacing voters for k≥ 2. We solve these open cases, pro-
viding a dichotomy result for k-Veto with respect to the
values of k.

• Finally, we investigate the complexity of control for two
common voting rules, which, surprisingly, have not been
considered yet in the literature, namely Plurality and Veto
with Runoff.

2 Preliminaries
An election E is given by a tuple E = (C,V) where C is a
finite set of candidates and V is a finite multiset of voters.
Each vote is defined as a linear order over C, indicating the
preference of the voter over C. In particular, if a voter v ∈V
prefers candidate a to candidate b, denoted as a� b, a is or-
dered before b in v. A voting correspondence (or voting rule)
τ maps each election (C,V) to a subset of candidates called
the winners of the election. For two candidates a,b ∈C, let
NE(a,b) be the number of voters preferring a to b. For a vote
v ∈V , let top(v) and bot(v) denote the candidates ranked at

the top and at the last position in v, respectively. Further-
more, for any set X of candidates or voters let nX denote the
cardinality of X . We consider the following voting rules.

• Copelandα : For each pairwise comparison between two
candidates a and b, if NE(a,b) > NE(b,a), a receives 1
point and b 0 points. If NE(a,b) = NE(b,a), both a and
b receive α points, where α ∈ [0,1]. The candidates with
the highest total points are the winners.

• Maximin: The Maximin score of a candidate a is defined
as minb∈C\{a}NE(a,b). Candidates with the highest Max-
imin score are the winners.

• k-Approval: Each voter gives 1 point to every candidate
ranked on the top-k positions. The winners are the can-
didates with the highest total score. 1-Approval is often
referred to as Plurality.

• k-Veto: Each voter gives 0 points (we also say vetoes) to
every candidate ranked on the last k positions. The win-
ners are the candidates with the least vetoes. 1-Veto is of-
ten referred to as Veto.

• Plurality with Runoff: Each voter only approves of his
top-ranked candidate. If there is a candidate c who is ap-
proved by every voter, then c is the unique winner. Oth-
erwise, this voting rule takes two stages to select the win-
ner. In the first stage, all candidates except the ones who
receive the most and second-most approvals are elimi-
nated from the election. If more than two candidates re-
main, a tie-breaking rule is applied to select exactly two of
the remaining candidates. Then, the remaining two candi-
dates, say c and d, compete in the second stage (runoff
stage). In particular, if NE(c,d) > NE(d,c) then c wins;
and if NE(d,c) > NE(c,d) then d wins. Otherwise, a tie-
breaking rule applies to determine the winner between c
and d.

• Veto with Runoff: Each voter vetoes exactly one candidate.
This voting rule is defined similar to Plurality with runoff,
with a slight difference in the first stage. All candidates
except the ones who receive the least and second-least ve-
toes are eliminated from the election.

A voting rule is said to be unanimous if the same candi-
date is ranked in the top position in all votes, this candidate
wins.

In this paper, we consider various control problems which
can be considered as special cases of the following problem.

τ -CONSTRUCTIVE MULTIMODE CONTROL

Given: An election (C ∪D,V ∪W) with registered can-
didate set C, unregistered candidate set D, regis-
tered voter set V , unregistered voter set W , a desig-
nated candidate c ∈C, and four non-negative inte-
gers `AV , `DV , `AC, `DC, with `AV ≤ |W |, `DV ≤ |V |,
`AC ≤ |D|, and `DC ≤ |C|.

Question: Are there V ′ ⊆ V , W ′ ⊆W , C′ ⊆C, D′ ⊆ D, with
|V ′| ≤ `DV , |W ′| ≤ `AV , |C′| ≤ `DC, and |D′| ≤ `AC,
such that c is a winner of the election ((C \C′)∪
D′,(V \V ′)∪W ′) under voting rule τ?

In τ-Destructive Multimode Control we ask whether there
exist subsets V ′,W ′,C′, and D′ such that c is not a winner in
((C \C′)∪D′,(V \V ′)∪W ′) under τ .

In this paper we consider several special cases of multi-
mode control, such as adding, deleting, or replacing either
candidates or voters. The following list gives an overview of
the restrictions compared to the general multimode control
problem:

Problems Restrictions

Add. Voters `AC = `DC = `DV = 0 and D = /0
Del. Voters `AC = `DC = `AV = 0 and D =W = /0
Add. Candidates `DC = `AV = `DV = 0 and W = /0
Del. Candidates `AC = `AV = `DV = 0 and D =W = /0

Repl. Voters |V ′|= |W ′|, `AV = `DV ,
`AC = `DC = 0 and D = /0

Repl. Candidates |C′|= |D′|, `AC = `DC,
`AV = `DV = 0 and W = /0

Throughout the paper, we will use a four-letter code for
our problems. The first two characters CC/DC stand for
constructive/destructive control, the third character A/D/R
stands for adding/deleting/replacing, and the last one C/V
for voters/candidates (for example, DCRV stands for de-
structive control by replacing voters). For simplicity, in each
problem in the above table, we use ` to denote the integer(s)
in the input that is not necessarily required to be 0. For exam-
ple, when considering CCRV, we use ` to denote `AV = `DV .

We assume the reader to be familiar with basics in com-
plexity theory, such as NP-completeness or the complexity
class P. Our NP-hardness results are mainly based on reduc-
tions from the following NP-complete problem (Gonzalez
1985).

3-EXACT COVER BY 3-SETS (3-X3C)

Given: A set U = {u1, . . . ,u3κ} and a collection S =
{S1, . . . ,Sn} of 3-element subsets of U such that
each u j ∈U occurs in exactly three subsets Si ∈ S.
(We have |S|= n = 3κ = |U |.)

Question: Does S contain an exact cover for U , i.e., a subcol-
lection S′ ⊆ S such that every element of U occurs
in exactly one member of S′?

The EXACT 3-SET COVER (X3C) problem is a general-
ization of 3-X3C where the elements in U do not necessarily
occur exactly in three subsets of S.

For showing membership in P, we will in some
proofs make use of the following problem introduced
by (Grötschel, Lovász, and Schrijver 1988) (for membership
in P, see also (Gabow 1983)).

GENERALIZED WEIGHTED b-EDGE MATCHING

Given: An undirected multigraph G = (V,E) without
loops, capacity functions bl ,bu : V → N0, cl ,cu :
E→ N0 and a weight function w : E→ N0.

Question: Can we find a function x : E → N0 that max-
imizes ∑e∈E w(e)x(e) such that cl(e) ≤ x(e) ≤
cu(e) holds for each edge e ∈ E and bl(v) ≤
∑e∈E∩δ (v) x(e)≤ bu(v) holds for each node v∈V ?
(δ (v) is the set of edges incident to node v.)

Important special cases are b-edge matching and b-edge
cover. For both problems, we have cl(e) = 0 and cu(e) as
the number of appearances of edge e. For the matching prob-
lem, we have bl(v) = 0 and w(e) = 1 for each v ∈V,e ∈ E.1
In contrast, we have bu(v) = ∞ and w(e) = −1 for the
cover problem. The weights are negative as we want to
minimize the number of edges for the cover problem. Con-
versely we seek to maximize the number of edges for the
matching problem. Throughout this paper, we will say gen-
eralized b-edge matching and generalized b-edge cover and
use these notions interchangeably with (b-)edge matching
and (b-)edge cover, respectively, for practical reasons (when
there is no way of confusion). These problems are defined in
a way that the number of edges is maximized or minimized
(i.e., w(e) = 1 or −1), but both vertices and edges may have
both upper and lower capacity constraints.

3 Results
Copelandα . We start by completing our knowledge on con-
trol in Copelandα elections. Faliszewski et al. (2009) and
Loreggia (2012) investigated the complexity of control in
Copelandα elections, leaving the cases destructive control
by replacing voters and constructive and destructive control
by replacing candidates open. A voting rule satisfies Insen-
sitive to Bottom-ranked Candidates (IBC) if the winners do
not change after a subset of candidates which are ranked af-
ter all other candidates in all votes are deleted. Note that both
Copelandα and Maximin satisfy IBC. Loreggia et al. (2015;
2016) established the following relationship between CCRC
and CCDC, and between DCRC and DCDC.

Lemma 1. (Loreggia 2016; Loreggia et al. 2015) Let τ be
a voting rule satisfying IBC. Then, τ -CCRC is NP-hard if
τ -CCDC is NP-hard, and τ -DCRC is NP-hard if τ -DCDC
is NP-hard.

Due to Lemma 1 and the facts that Copelandα satisfies
IBC, and Copelandα -CCDC and Copelandα -DCDC are NP-
hard (Faliszewski et al. 2009), it follows that Copelandα -
CCRC and Copelandα -DCRC are NP-hard.

It remains the case of destructive control by replacing vot-
ers.

Theorem 2. Copelandα -DCRV is NP-complete for any α ,
0≤ α ≤ 1.

We omit the proof due to space constraints. The proof is a
slight modification of the Copelandα -CCAV proof in (Fal-
iszewski et al. 2009) with the only difference that there are
k further votes ranking the designated candidate first. These
votes are replaced with the highest priority.

Maximin. Let us now turn to Maximin. Faliszewski et
al. (2011) have already investigated the complexity of con-
structive and destructive control by adding and deleting ei-
ther candidates or voters. We will complete the picture on
control in Maximin elections by providing results on con-
structive and destructive control by replacing candidates and
voters. It is known that constructive control by deleting

1We could also use an arbitrary positive constant weight for
each e, but for sake of simplicity we use 1.

candidates for Maximin is polynomial-time solvable (Fal-
iszewski, Hemaspaandra, and Hemaspaandra 2011). Hence,
we could not obtain the NP-hardness of MAXIMIN-CCRC
from Lemma 1. However, Loreggia (Loreggia 2016) intro-
duced another useful lemma.

Lemma 3. (Loreggia 2016) Let τ be an unanimous vot-
ing rule that satisfies IBC. If τ -CCAC is NP-hard, then τ -
CCRC is NP-hard.

Due to this lemma and the facts that (1) Maximin is
unanimous; (2) Maximin satisfies IBC; and (3) CCAC for
Maximin is NP-complete (Faliszewski, Hemaspaandra, and
Hemaspaandra 2011), we know that MAXIMIN-CCRC is
NP-complete.

The following theorem handles constructive and destruc-
tive control by replacing voters. Our proof is a modifica-
tion of the proof of constructive control by adding voters in
Maximin (Faliszewski, Hemaspaandra, and Hemaspaandra
2011).

Theorem 4. MAXIMIN-CCRV and MAXIMIN-DCRV are
NP-complete.

Proof Sketch. We start with the constructive case. Let
(U,S) be a given X3C instance. We construct the following
CCRV instance. Let the set of candidates be C =U ∪{c,d}
with the distinguished candidate c. The registered voter set
consists of the following voters:

1. There are 3κ +1 voters of the form d �U � c,

2. there are κ voters of the form c�U � d, and

3. there are κ voters of the form c� d �U .

Moreover, for each Si ∈ S, we create an unregistered vote
in W of the form (U \Si)� c� Si � d. Finally, we set `= κ ,
i.e., we are allowed to replace at most κ voters.

We claim that we can make candidate c the winner of the
election by replacing up to κ voters if and only if S con-
tains an exact cover for U . The argument for the correctness
is similar to the one for MAXIMIN-CCAV in (Faliszewski,
Hemaspaandra, and Hemaspaandra 2011).

The destructive version works identically, except that the
first voter group contains only 3κ voters and the distin-
guished candidate is d.

It remains to show the complexity of destructive con-
trol by replacing candidates in Maximin. In contrast to the
NP-hardness results for the other replacing cases, we show
that Maximin-DCRC is polynomial-time solvable. In fact,
we show the P-membership of a more general problem
called exact destructive control by adding and deleting can-
didates, denoted by τ-EDCAC+DC. In particular, this prob-
lem is a variant of the multimode control problem where
`AV = `DV = 0,W = /0. Moreover, it must hold that in the so-
lution |C′|= `DC and |D′|= `AC (i.e., the chair removes and
adds an exact number of candidates). Note that the number
of candidates added and the number of candidates removed
have not to be the same.

Theorem 5. MAXIMIN-EDCAC+DC is in P.

Proof. Our input is an exact destructive control by adding
and deleting candidates instance as defined above. Suppose
that the chair adds exactly `AC candidates from D and deletes
exactly `DC candidates from C. Note that `DC < |C| since the
chair must not delete the despised candidate c. Our algo-
rithm works as follows. It checks if there is a pivotal candi-
date c′ 6= c that beats c in the final election.

In case c has at most k points, there is some candidate
d ∈ (C ∪D) \ {c}, not necessarily different from c′ with
N(c,d) ≤ k . Our algorithm checks whether there is a final
election including c, c′ and d, c has at most k points and c′
has at least k+1 points, where k ∈ {0,1, . . . , |V |−1}. Note
that we may restrict ourselves to values k≤ d |V |2 e−1. Other-
wise c does not lose any pairwise comparison and is a weak
Condorcet winner and thus a Maximin winner, since no other
candidate can do better.

Given a pair (c′,k) with c′ ∈ (C∪D)\{c}, our algorithm
does the following:

• Compute D(c′)= {d ∈ (C∪D)\{c} : N(c,d)≤ k ∧ (c′=
d ∨ N(c′,d) > k)}. If D(c′) = /0 or N(c′,c) ≤ k, we im-
mediately reject for the pair (c′,k). Otherwise, we guess
a candidate d ∈ D(c′) (not necessarily different from c′).
d has the function to fix the score of c below k. In order
to keep c′’s score above the score of c, it must hold either
c′ = d or N(c′,d) > k. 2 Unless we abort, go to the next
step.

• Check whether `DC ≤ |C| − 1− |C ∩ {c′,d}| and `AC ≥
|D∩{c′,d}|. Otherwise we reject because there is no way
for the chair to keep (add) both c′ and d in(to) the final
election. If yes, proceed with the next step.

• Compute C1 = {c′′ ∈C \ {c,c′,d} : N(c′,c′′) ≤ k}. Can-
didates in C1 must all be deleted in order to keep the max-
imin score of c′ higher than k. If |C1| > `DC, we discard
this subcase and try the next triple (c′,k,d). Otherwise,
the chair deletes all candidates in C1 and arbitrary other
candidates in C \ {c,c′,d} such that exactly `DC candi-
dates have been deleted. We go to the next step.

• Compute D1 = {a ∈ D \ {c′,d} : N(c′,a) > k}. Candi-
dates in D1 are the only candidates which may be added
and the score of c′ does not decrease. Hence, if |D1| <
`AC−|D∩{c′,d}|, we reject for the triple (c′,k,d) since
the chair must add some candidates leading to a lower
score than k+1 for c′. Otherwise, we accept.

The correctness and polynomial running time immediately
follow for this algorithm. q

Due to the Theorem 5, we obtain the following result.

Corollary 6. MAXIMIN-DCRC is in P.

We would like to point out that Faliszewski et al. (2011)
showed that MAXIMIN-CCACU+DC is polynomial-time
solvable. In this case the chair is allowed to add as many
unregistered candidates as he wants but can only delete a
limited number of candidates.

2Note that if the Maximin score of c is less than k, c′ can also
beat c with k points, but this case is captured by another pair (c′,k).

k-Veto. Turning now to k-Veto, it is known that
VETO-CCRV and k-VETO-DCRV for all possible k are
polynomial-time solvable (Loreggia et al. 2015). We com-
plement these results by showing that 2-VETO-CCRV is
polynomial-time solvable and that k-VETO-CCRV is NP-
complete for k ≥ 3, achieving a dichotomy result for k-Veto
with respect to the values of k.

Let V c (W c) be the set consisting of all voters in V (W)
vetoing c, and define V¬c =V \V c (W¬c =W \W c). For an
election (C,V) and a candidate c ∈ C, let vetoes(C,V)(c) be
the number of voters in V vetoing c.
Theorem 7. 2-VETO-CCRV is in P.

Proof. Our input is a constructive control by replacing vot-
ers instance as defined in the Preliminaries. Our algorithm
distinguishes the following cases:

• vetoes(C,V)(c)≤min(`,nW −vetoes(C,W)(c)): In this case,
the algorithm returns “Yes” since c can be made a winner
with zero vetoes by replacing all registered votes vetoing
c with equal number of unregistered votes not vetoing c.

• nW − vetoes(C,W)(c)≤min(`,vetoes(C,V)(c)): In this sub-
case, the chair definitely replaces nW − vetoes(C,W)(c)
voters in V vetoing c by the same number of voters
from W not vetoing c. Possibly, he exchanges further
`− nW + vetoes(C,W)(c) V -voters vetoing c by W -voters
vetoing c. Anyway, c has exactly vc = vetoes(C,V)(c)−
(nW − vetoes(C,W)(c)) = vetoes(C,V∪W)(c)− nW vetoes in
the final election. Since none of the voters in V¬c are ex-
changed and since all voters from W¬c join the election,
we are searching for no more than vc voters in V c ∪W c

that shall belong to the final election, such that at least
max(0,vetoes(C,V)(c)− `) among them belong to V c (as
the chair can replace at most ` voters in total) 3. This leads
to the following b-edge cover problem.
Each candidate d 6= c yields a vertex d. There are
two vertices cV and cW representing vetoes that non-
distinguished candidates receive from voters in V or W
vetoing c, respectively. Each voter in V c (W c) vetoing d
and c yields an edge between d and cV (cW). The ca-
pacities are b(d) = vc − vetoes(C,V¬c∪W¬c)(d), b(cV) =
max(0,vetoes(C,V)(c) − `), b(cW) = 0. The capacities
for the d take into account that d already receives
vetoes(C,V¬c∪W¬c)(d) vetoes from voters not vetoing c,
which are fixed in the final election.
There is an edge cover with at most vc edges if and only
if c can be made a winner in the final election as then
(and only then) the chair can add at most ` voters and
as few as possible of these voters veto c. Notice that the
capacities ensure that at least max(0,vetoes(C,V)(c)− `)
voters in V vetoing c remain in the final election (that is,
at most ` voters are exchanged in total), and—provided
that the matching has the correct size—that at most `−
3If vetoes(C,V)(c) ≤ `, the algorithm described below can be

simplified to a simple greedy algorithm that – given candidate d 6= c
– tries to add (at least) δ (d) := max(0,vc− vetoes(C,V¬c∪W¬c)(d))
voters in V c∪W c vetoing d (and c) to the election, without consid-
ering more than vc voters from V c∪W c in total.

nW +vetoes(C,W)(c) voters are added from W c (and hence
at most ` in total).

• `≤min(vetoes(C,V)(c),nW − vetoes(C,W)(c)): In this sub-
case, the chair exchanges ` voters in V vetoing c for `
voters from W not vetoing c.
We may fix the voters in V¬c in the final election as none
of them is exchanged. Additionally we want to make sure
that vetoes(C,V)(c)−` voters from V c are in the final elec-
tion, and the vetoes of (at most) ` voters from W¬c are
accounted for. This leads to the following b-edge cover
problem with upper and lower vertex constraints.
We are given the vertex set {cV}∪ (C \ {c}). Each voter
in V c vetoing d 6= c (and c) yields an edge {cV ,d}. Each
voter in W¬c vetoing d and e (d 6= c 6= e 6= d) yields
an edge {d,e}. The capacities are bl(cV) = bu(cV) =
vetoes(C,V)(c) − `, bl(d) = max(0,vetoes(C,V)(c) − ` −
vetoes(C,V¬c)(d)), and bu(d) = ∞ (d ∈C \{c}).
c can be made a winner by exchanging (exactly) ` vot-
ers in V vetoing c for ` voters from W not vetoing c
if and only if there is a minimal edge cover with at
most vetoes(C,V)(c) edges. The capacity constraints en-
sure that exactly vetoes(C,V)(c)−` voters vetoing c remain
in V , and every non-distinguished candidate d receives
the missing required number of vetoes either from the re-
maining voters in V c or from voters added from W¬c. The
voters in V¬c and their vetoes assigned are fixed in ad-
vance. The size of the matching guarantees that ` added
voters suffice to ensure that every d 6= c has enough vetoes
in the final election.

Each subcase can be calculated in polynomial time. Con-
sequently, the overall algorithm terminates in polynomial
time. q

We fill the complexity gap for CCRV for k-Veto by show-
ing that k-VETO-CCRV is NP-complete for every k ≥ 3.
The proof is an adaption of the hardness proof of construc-
tive control by adding voters for 3-Veto (Lin 2011). All prob-
lems considered in this paper are in NP. Hence, for NP-
completeness results, we only prove NP-hardness.
Theorem 8. k-VETO-CCRV is NP-complete for every con-
stant k ≥ 3.

Proof. We show our result only for k = 3 and argue at the
end of the proof how to handle the cases k ≥ 4.

Our proof provides a reduction from X3C. Given an in-
stance (U,S) of X3C, we construct an instance of 3-VETO-
CCRV as follows. Let the candidate set be C = {c} ∪
{d1,d2,d3}∪U , with the designated candidate c. The set V
of registered voters consists of the following 2n−2κ +3κn
voters.

1. There are n+κ voters vetoing c, d1 and d2,
2. there are n voters vetoing d1, d2 and d3, and
3. for each j, 1 ≤ j ≤ 3κ , there are n− 1 voters vetoing u j

and two arbitrary dummy candidates in {d1,d2,d3}.
Note that with the registered voters c has n+ κ vetoes,

each u j ∈U has n−1 vetoes and di, i ∈ {1,2,3} has at least
n vetoes. Let the set W of unregistered voters consists of the

following n voters. For each Si ∈ S, there is a voter vetoing
the candidates in Si. Finally, we are allowed to replace at
most κ voters, i.e., `= κ .

We claim that c can be made a 3-Veto winner of the elec-
tion by replacing at most κ voters if and only if an exact
cover of U exists.

(⇐:) Assume that U has an exact cover S′ ⊆ S. After re-
placing the κ votes from W vetoing subsets Si ∈ S′ with ar-
bitrary κ voters in V vetoing c, c has (n+κ)−κ = n vetoes,
every u∈U has (n−1)+1 = n vetoes, and each of d1,d2,d3
has at least n vetoes. Clearly, c becomes a winner.

(⇒:) Assume that c can be made a 3-Veto winner of the
election by replacing voters. Let V ′ ⊆V and W ′ ⊆W be the
two sets such that |V ′| = |W ′| = κ and c becomes a winner
after the replacement. Note that no matter which voters are
in W ′, there must be a candidate u j ∈ U who has at most
n vetoes after the replacement. This implies that each voter
in V ′ must veto c. As a result, c has (n+κ)−κ = n vetoes
after the replacement. This further implies that for each j,
1 ≤ j ≤ 3κ , u j ∈ U there is at least one voter in W ′ who
vetoes u j. As |W ′| = κ , due to the construction of W , the
collection of 3-subsets corresponding to the κ voters in W ′
must form an exact 3-set cover.

To show the NP-hardness for k ≥ 4, we can add k− 3
dummy candidates being vetoed by every vote. q

Plurality and Veto with Runoff. We now turn to the fi-
nal two voting rules considered in this paper. Both voting
rules are common voting rules, however, there are no results
on control in Plurality and Veto with Runoff. We first show
that CCAV/CCDV/CCRV for both Plurality and Veto with
Runoff are polynomial-time solvable. Instead of showing
the results separately one-by-one, we prove that a variant of
multimode control, exact constructive control by adding and
deleting voters (denoted by τ-ECCAV+DV), is polynomial-
time solvable, where τ is Plurality with Runoff and Veto
with Runoff. In this exact variant, we require that the num-
ber of added and deleted voters is exactly equal to the corre-
sponding given integer, i.e., we require that |V ′| = `DV and
|W ′| = `AV . Moreover, we have `AC = `DC = 0 and D = /0.
Note that CCAV/CCDV/CCRV are polynomial-time many-
one reducible to ECCAV+DV.

From now on, we assume that ties are broken in fa-
vor of candidate c. For an election (C,V) and a candidate
d ∈ C, let score(C,V)(d) be the number of voters in V ap-
proving d. In the proof of the following theorem we will
show membership in P by reducing the given problem to the
polynomial-time solvable problem INTEGRAL MIN-COST
FLOW (Ahuja, Magnanti, and Orlin 1993).
Theorem 9. Both PLURALITY WITH RUNOFF-
ECCAV+DV and VETO WITH RUNOFF-ECCAV+DV are
in P.

Proof. Due to space constraints, we only provide the algo-
rithm for Plurality with Runoff. Our input is an exact con-
structive control by adding and deleting voters instance as
defined above. Our algorithm guesses a candidate d ∈C and
four integers `c

AV , `
d
AV , `

c
DV , `

d
DV such that 0 ≤ `c

X + `d
X ≤ `X

for X ∈ {AV, DV}. The guessed candidate d is supposed to

be the one who competes with c in the runoff stage. More-
over, `c

AV (resp. `d
AV) is supposed to be the number of voters

added from W that approve c (resp. d), and `c
DV (resp. `d

DV) is
supposed to be the number of voters deleted from V that ap-
prove c (resp. d). Given such guessed candidate and integers,
we determine whether we can add exactly `AV votes wherein
`c

AV (resp. `d
AV) of them approve c (resp. d), and delete exactly

`DV votes wherein `c
DV (resp. `d

DV) of them approve c (resp.
d). Clearly, the original instance is a Yes-instance if and only
if at least one guess leads to a Yes answer to the above ques-
tion. We show how to find the answer to the above question
in polynomial-time. We immediately discard the guess if one
of the following conditions holds:

(1) `c
DV > score(C,V)(c)

(2) `d
DV > score(C,V)(d)

(3) `c
AV > score(C,W)(c)

(4) `d
AV > score(C,W)(d)

Assume that none of the above conditions holds. Then, the
scores of c and d are fixed. In particular, the final score of
e∈ {c,d}, denoted by score(e), is score(C,V)(e)+`e

AV −`e
DV .

Let s = min{score(c),score(d)}. To ensure c and d to be in
the runoff, each candidate a ∈ C \ {c,d} may have at most
s points in total. A second condition for c to be a runoff
winner against d is that c wins d in the pairwise compar-
ison between them. Since there are n′ = nV + `AV − `DV
voters in the final election (C,V ′), c must win at least
d n′

2 e duels against d or, equivalently speaking, at most
b n′

2 c comparisons may be won by d. Let A = C \ {c,d}
and score(C,V)(A) = ∑a∈A score(C,V)(a). Moreover, for X ∈
{AV,DV}, let `A

X = `X − `c
X − `d

X . As d in turn wins score(d)
comparisons against c in all votes where d is the top candi-
date, there may be at most b n′

2 c− score(d) voters favouring
some a∈ A and preferring d to c in the final election. Hence,
if this number is negative, we immediately reject for the cur-
rent guess and regard the next one. Otherwise, we search for
exactly nV − score(C,V)(c)− score(C,V)(d)︸ ︷︷ ︸

=score(C,V)(A)

−`A
DV voters in V

not deleted and voting for candidates in A and for exactly
`A

AV voters added from W and preferring some a ∈ A such
that the final election contains at most b n′

2 c− score(d) vot-
ers who rank some a ∈ A first and prefer d over c. This leads
to the following mincost flow problem.

There is a source x, a sink y, and two nodes V A and W A.
Moreover, each voter in V ∪W favoring some a ∈ A yields a
node. Moreover, each a∈A yields a node a. If not mentioned
other, each cost is equal to zero. There is an arc from x to
V A with capacity score(C,V)(A)− `A

DV . There is another arc
from x to W A with capacity `A

AV . Each voter v ∈ V with top
candidate in A yields an arc (V A,v) with capacity 1. The
cost of this arc is equal to one if and only if v prefers d to c.
Analogously we define edges from W A to w corresponding
to voters in W favoring some a ∈ A. There is an edge from v
to a with capacity one if and only if v prefers a most (where
v ∈V ∪W). Each a ∈ A yields an arc (a,y) with capacity s.

There is a (maximum) flow with value score(C,V)(A)−

`A
DV + `A

AV and (minimum) cost of at most b n′
2 c− score(d)

since then and only then our algorithm can find exactly
score(C,V)(A)− `A

DV (remaining) voters in V voting for some
a ∈ A and exactly `A

AV A-voters added from W , each a has no
more points than c or d, and (since each pairwise compari-
son of c against d costs one unit) a weak majority of voters
prefers c to d in the final election. q

The exact versions of the destructive multimode control
for Plurality and Veto with Runoff are polynomial-time solv-
able too. We omit the proofs.

Theorem 10. Both PLURALITY WITH RUNOFF-
EDCAV+DV and VETO WITH RUNOFF-EDCAV+DV are
in P.

Given the above results, we obtain the following corollary.

Corollary 11. PLURALITY WITH RUNOFF-Y
and VETO WITH RUNOFF-Y are in P for all
Y ∈ {CCAV, CCDV, CCRV, DCAV, DCDV, DCRV}.

Consider now candidate control. We show that candidate
control for Plurality and Veto with Runoff are generally NP-
complete.

Theorem 12. PLURALITY WITH RUNOFF-CCAC, VETO
WITH RUNOFF-CCAC, PLURALITY WITH RUNOFF-
DCAC, and VETO WITH RUNOFF-DCAC are NP-
complete.

Proof. Due to space constraints, we only prove VETO WITH
RUNOFF-CCAC. We prove the claim by a reduction from
the 3-X3C problem. For a given 3-X3C instance (U,S), we
create the following instance.

Let C =U∪{c,q} be the set of registered candidates, S be
the set of unregistered candidates (for each Si ∈ S we create
a candidate denoted by the same symbol), and c the distin-
guished candidate. Let V be the set of voters consisting of
the following voters.

1. There is a voter of the form S�U � c� q,
2. for each i, 1 ≤ i ≤ n, there are 3κ + 1 voters of the form

q�U � c� S\{Si} � Si,
3. for each i, 1 ≤ i ≤ n, there are 3κ + 1 voters of the form

c�U � q� S\{Si} � Si,
4. for each j, 1≤ j≤ 3κ , there are 6κ−3 voters of the form

c� q� S�U \{u j} � u j,
5. for each i, 1≤ i≤ n, with Si = {ui1 ,ui2 ,ui3} ∈ S, there are

three voters of the form q�U � S\{Si} � c� Si,
6. for each i, 1 ≤ i ≤ n, with Si = {ui1 ,ui2 ,ui3} ∈ S, there

are two voters of the form c� q�U \{ui1} � S\{Si} �
ui1 � Si,

7. for each i, 1 ≤ i ≤ n, with Si = {ui1 ,ui2 ,ui3} ∈ S, there
are two voters of the form c� q�U \{ui2} � S\{Si} �
ui2 � Si, and

8. for each i, 1 ≤ i ≤ n, with Si = {ui1 ,ui2 ,ui3} ∈ S, there
are two voters of the form c� q�U \{ui3} � S\{Si} �
ui3 � Si.

We are allowed to add at most κ candidates, i.e, ` = κ .
Note that candidate c has 3κ(3κ + 1) + 9κ vetoes, q has
3κ(3κ + 1)+ 1 vetoes, and for every j, 1 ≤ j ≤ 3κ , u j has
6κ +3 vetoes. Hence, c is not a Veto with Runoff winner of
the election.

We claim that c can be made a Veto with Runoff winner
by adding at most κ candidates if and only if an exact cover
of U exists.

(⇐:) Assume that there is an exact 3-set cover S′ of U .
After adding the candidates in S′, candidate q has 1 veto, for
every i, 1≤ i≤ n, Si has at least (3κ+1)+(3κ+1)= 6κ+2
vetoes, for every j, 1≤ j ≤ 3κ , u j has 6κ +3−2 = 6κ +1
vetoes, and c has 6κ vetoes. Hence, q and c move into the
runoff stage. As more voters prefer c over q than the other
way round, c becomes a final winner.

(⇒:) Assume that adding S′ ⊆ S from the unregistered set
of candidates to the election makes c a winner under Veto
with Runoff. Observe first that S′ must contain exactly κ

candidates, since otherwise c would have at least 6κ +3 ve-
toes, while at least one candidate in U would have at most
6κ + 3− 2 = 6κ + 1 vetoes. Hence, this candidate and q
would be the two candidates going to the runoff stage. So,
we have |S′|= κ . It follows that c has 6κ vetoes after adding
candidates in S′. If S′ is not an exact 3-set cover, there must
be a candidate u j ∈U occurring in at least two subsets of S′.
Then, this candidate has at most 6κ +3−4 = 6κ−1 vetoes,
leading q and this candidate to be the ones competing in the
runoff stage. So, we can conclude that S′ is an exact 3-set
cover. q

Theorem 13. PLURALITY WITH RUNOFF-CCDC, VETO
WITH RUNOFF-CCDC, PLURALITY WITH RUNOFF-
DCDC, and VETO WITH RUNOFF-DCDC are NP-
complete.

Proof. Due to space constraints, we only prove PLURAL-
ITY WITH RUNOFF-CCDC. We prove the claim by a re-
duction from the 3-X3C problem. For a given 3-X3C in-
stance (U,S), we create the following instance. Let C =
{c,q}∪U∪S be the set of candidates and c the distinguished
candidate. Let V be the set of voters consisting of the follow-
ing 9κ2 +21κ +1 voters.

1. There are 2κ voters of the form q� u1 � u2 � ·· · � u3κ �
S� c,

2. there are κ+1 voters of the form q� u3κ � u3κ−1 � ·· · �
u1 � S� c,

3. for each j, 1≤ j≤ 3κ , there are 3κ−3 voters of the form
u j �C \{c,q,u j} � c� q,

4. for each i, 1≤ i≤ n, with Si = {ui1 ,ui2 ,ui3} ∈ S, there are
three voters of the form Si � c�C \ (Si∪{c,q})� q,

5. for each i, 1≤ i≤ n, with Si = {ui1 ,ui2 ,ui3} ∈ S, there are
two voters of the form Si � ui1 �C \{c,q,ui1} � c� q,

6. for each i, 1≤ i≤ n, with Si = {ui1 ,ui2 ,ui3} ∈ S, there are
two voters of the form Si � ui2 � C \ {c,q,ui2} � c � q,
and

7. for each i, 1≤ i≤ n, with Si = {ui1 ,ui2 ,ui3} ∈ S, there are
two voters of the form Si � ui3 �C \{c,q,ui3} � c� q.

Furthermore, let `DC = κ .
We claim that c can be made a Plurality with Runoff win-

ner by deleting at most κ candidates if and only if an exact
cover of U exists.

(⇐:) Assume there is an exact 3-set cover S′. After delet-
ing the candidates in S′, q has 2κ+κ+1= 3κ+1 approvals,
c has 3κ approvals, every remaining Si ∈ S has 9 approvals
and for every j, 1≤ j ≤ 3κ , u j has 3κ−3+2 = 3κ−1 ap-
provals. Hence, q and c go to the runoff stage, leading c to
be the final winner.

(⇒:) Assume that it is possible to make c a Plurality with
Runoff winner of the election by deleting at most κ candi-
dates. Let us denote these candidates by C′. Note that q 6∈C′,
since otherwise there would be two candidates in U receiv-
ing at least 3κ−3+2κ = 5κ−3 and 3κ−3+κ+1= 4κ−2
approvals, preventing c from winning. Furthermore, none of
the candidates in U can be deleted, i.e., U ∩C′ = /0. In fact,
if we delete a candidate u j ∈U , then the candidate ranked
immediately after u j in the 3κ−3 votes created for u j would
receive at least (3κ−3)+(3κ−3) = 6κ−6 approvals, pre-
venting c from going to the runoff stage. This means that
the deletion of one candidate in U invites the deletion of all
candidates in U , to make c the winner. However, we are al-
lowed to delete at most κ candidates. Therefore, we have
C′ ⊆ S. After deleting the candidates in C′, c has 3|C′| ap-
provals. Note that |C′|= κ must hold, otherwise at least one
candidate in U would receive more approvals than candidate
c, after deleting all candidates in C′, hence, this candidate
and q would be the two candidates going to the runoff stage.
In consequence, we know that c receives 3κ approvals after
deleting all candidates in C′. If C′ is not an exact 3-set cover,
then there must be a candidate u j ∈U who occurs in at least
two subsets of C′. Due to the construction, this candidate
receives at least 3κ − 3+ 2+ 2 = 3κ + 1 approvals, imply-
ing that q and this candidate are the two candidates going to
the runoff stage, contradicting that c is the final winner after
deleting all candidates in C′. Thus, C′ must be an exact 3-set
cover. q

Note that all hardness result hold regardless of the tie-
breaking rule used. It remains to show the replacing candi-
dates cases. We omit the proof.
Theorem 14. PLURALITY WITH RUNOFF-CCRC, VETO
WITH RUNOFF-CCRC, PLURALITY WITH RUNOFF-
DCRC, and VETO WITH RUNOFF-DCRC are NP-
complete.

4 Conclusion
We have investigated the computational complexity of con-
trol for Copelandα , Maximin, k-Veto, Plurality with Runoff,
and Veto with Runoff, closing the gaps in the literature. We
would like to point out that the complexity of partitioning ei-
ther the set of candidates or the set of voters is still open for
the voting rules Plurality with Runoff and Veto with Runoff.

References
Ahuja, R.; Magnanti, T.; and Orlin, J. 1993. Network Flows:
Theory, Algorithms, and Applications. Prentice-Hall.
Bartholdi III, J. J., and Orlin, J. B. 1991. Single transfer-
able vote resists strategic voting. Social Choice and Welfare.
8(4):341–354.
Bartholdi III, J. J.; Tovey, C. A.; and Trick, M. A. 1989. The
computational difficulty of manipulating an election. Social
Choice and Welfare 6(3):227–241.
Bartholdi III, J. J.; Tovey, C. A.; and Trick, M. A. 1992.
How hard is it to control an election? Mathematical and
Computer Modelling 16(8-9):27–40.
Baumeister, D., and Rothe, J. 2015. Preference aggrega-
tion by voting. In Rothe, J., ed., Economics and Computa-
tion. An Introduction to Algorithmic Game Theory, Compu-
tational Social Choice, and Fair Division. Springer-Verlag.
Chapter 4, 197–325.
Betzler, N., and Uhlmann, J. 2009. Parameterized com-
plexity of candidate control in elections and related digraph
problems. Theoretical Computer Science 410(52):5425–
5442.
Erdélyi, G.; Fellows, M.; Rothe, J.; and Schend, L. 2015.
Control complexity in Bucklin and fallback voting: A theo-
retical analysis. Journal of Computer and System Sciences
81(4):632–660.
Erdélyi, G.; Nowak, M.; and Rothe, J. 2009. Sincere-
strategy preference-based approval voting fully resists con-
structive control and broadly resists destructive control.
Mathematical Logic Quarterly 55(4):425–443.
Faliszewski, P., and Rothe, J. 2016. Control and bribery
in voting. In Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.;
and Procaccia, A., eds., Handbook of Computational Social
Choice. Cambridge University Press. Chapter 7, 146–168.
Faliszewski, P.; Hemaspaandra, E.; Hemaspaandra, L.; and
Rothe, J. 2009. Llull and Copeland voting computationally
resist bribery and constructive control. Journal of Artificial
Intelligence Research 35:275–341.
Faliszewski, P.; Hemaspaandra, E.; and Hemaspaandra,
L. A. 2011. Multimode control attacks on elections. Journal
of Artificial Intelligence Research 40:305–351.
Gabow, H. N. 1983. An efficient reduction technique for
degree-constrained subgraph and bidirected network flow
problems. In Proceedings of the fifteenth annual ACM sym-
posium on Theory of computing, 448–456.
Gonzalez, T. F. 1985. Clustering to minimize the maximum
intercluster distance. Theoretical Computer Science 38:293–
306.
Grötschel, M.; Lovász, L.; and Schrijver, A. 1988. Geo-
metric Algorithms and Combinatorial Optimization. Hei-
delberg: Springer.
Hemaspaandra, E.; Hemaspaandra, L.; and Rothe, J. 2007.
Anyone but him: The complexity of precluding an alterna-
tive. Artificial Intelligence 171 (5-6):255–285.
Lin, A. 2011. The complexity of manipulating k-approval
elections. In Proceedings of the 3rd International Confer-
ence on Agents and Artificial Intelligence, 212–218.

Loreggia, A.; Narodytska, N.; Rossi, F.; Venable, K.; and
Walsh, T. 2015. Controlling elections by replacing can-
didates or votes. In Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent Systems,
1737–1738.
Loreggia, A. 2012. Iterative voting and multi-mode con-
trol in preference aggregation. Master’s thesis, University of
Padova.
Loreggia, A. 2016. Iterative Voting, Control and Sentiment
Analysis. Ph.D. Dissertation, University of Padova.
Maushagen, C., and Rothe, J. 2016. Complexity of control
by partitioning veto and maximin elections and of control
by adding candidates to plurality elections. In Proceedings
of the 22nd European Conference on Artificial Intelligence,
277–285.

