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Abstract

We study preference representation models based on
partial lexicographic preference trees (PLP-trees). We
propose to represent preference relations as forests of
small PLP-trees (PLP-forests), and to use voting rules
to aggregate orders represented by the individual trees
into a single order to be taken as a model of the agent’s
preference relation. We show that when learned from
examples, PLP-forests have better accuracy than sin-
gle PLP-trees. We also show that the choice of a vot-
ing rule does not have a major effect on the aggre-
gated order, thus rendering the problem of selecting
the “right” rule less critical. Next, for the proposed
PLP-forest preference models, we develop methods to
compute optimal and near-optimal outcomes, the tasks
that appear difficult for some other common preference
models. Lastly, we compare our models with those
based on decision trees, which brings up questions for
future research.

Introduction
Preferences are fundamental to decision making and
have been researched in areas such as decision theory,
social choice, knowledge representation, and constraint
satisfaction. Preferences amount to a total order or pre-
order on a set of outcomes (alternatives). In some set-
tings, for instance in voting theory, the number of out-
comes is small enough to allow an explicit enumeration
as a method to represent preference relations. However,
in other settings outcomes are specified in terms of at-
tributes, each with its own domain, where an outcome is
a tuple of values, one for each attribute. Such outcome
spaces are called combinatorial domains. If attribute
domains have at least two values, the cardinality of a
combinatorial domain is exponential in the number of
attributes. Consequently, explicit enumeration of pref-
erence orders, even for combinatorial domains over as
few as ten attributes, is infeasible.

To represent preferences over combinatorial domains,
we use languages that concisely express agent’s crite-
ria for preferring one outcome over another, thus de-
termining preference orders on outcomes. Languages
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exploiting lexicographic orders have been especially ex-
tensively studied. They include lexicographic strate-
gies (Schmitt and Martignon 1999), lexicographic pref-
erence trees, or LP-trees (Booth et al. 2010), partial
lexicographic preference trees, or PLP-trees (Liu and
Truszczynski 2015a), and preference trees (Fraser 1994;
Liu and Truszczynski 2015b). These models naturally
support preference reasoning (Wilson 2014; Wilson and
George 2017).

Lexicographic preference models have structure that
factors the agent’s preference order into the importance,
sometimes conditional, of attributes, and preference or-
ders, also sometimes conditional, on values of individual
attribute domains. This structure can be exploited for
preference elicitation. It also provides useful insights
into what is important for an agent when choosing
among available outcomes. In particular, it makes it
easy to compare outcomes (dominance testing) and to
identify outcomes that are most preferred.

In this paper, we focus on lexicographic models given
by PLP-trees (Liu and Truszczynski 2015a). PLP-trees
that impose strong restrictions on the structure, for
instance, those with unconditional importance of at-
tributes and unconditional preference orders on values
of attribute domains, can be elicited effectively from the
agents. However, in general, PLP-trees are difficult to
elicit directly and, have to be learned, that is, built from
examples of pairwise comparisons or other observed ex-
pressions of the agent’s preference (Liu and Truszczyn-
ski 2016). Unrestricted PLP-trees may have size of the
order of the size of the underlying combinatorial do-
main. Such large trees offer no advantages over explicit
enumerations of preference orders. However, PLP-trees
learned from a set E of examples have size O(|E|). This
gives us control over the size of learned trees but the
predictive power of trees learned from small sets of ex-
amples may be limited. Learning forests of small trees
and using some voting aggregation method can circum-
vent the problem. Following ideas proposed by Breiman
(2001), Liu and Truszczynski (2016) proposed to learn
forests of PLP-trees and use the Pairwise Majority rule
(PMR) to obtain a new type of a lexicographic prefer-
ence model (Liu and Truszczynski 2016).

The main problems with this last approach are that



the PMR does not (in general) yield an order and does
not lead to any obvious algorithms for reasoning tasks
other than dominance testing. For instance, it does not
seem to lead to natural approaches to preference opti-
mization, that is, computing optimal or near-optimal
outcomes. In this paper, we extend the results by Liu
and Truszczynski (2016) by replacing the PMR with
several common voting rules. Using voting rules to ag-
gregate preference orders defined by lexicographic mod-
els has drawn significant attention lately. Lang and Xia
(2009) studied sequential voting protocols. Lang, Men-
gin and Xia (2012) established computational proper-
ties of voting-based methods to aggregate LP-trees, and
Liu and Truszczynski (2013) conducted an experimen-
tal study of aggregating LP-trees by voting using SAT-
based tools.

Using voting rules to aggregate forests of PLP-trees
turns out to yield preference models where dominance
testing is as direct as with the PMR. However, pref-
erence optimization becomes feasible, too. As there
are many voting rules that could be used, and they
pose different computational challenges, it is impor-
tant to study whether some rules are better than oth-
ers. Earlier work in the standard voting setting showed
significant robustness of the aggregated order to the
choice of a voting rule. Comparing several common
voting rules, researchers found that, except for Plural-
ity, these voting methods show a high consensus on the
resulting aggregates preference ordering (Mattei 2011;
Felsenthal, Maoz, and Rapoport 1993). Our results on
rank correlation in the setting when individual prefer-
ences are represented by PLP-trees over possibly large
combinatorial domains also show high consensus among
orders determined by the PLP-forest models, at levels
consistent with those reported for the voting setting.

As long as we are interested in dominance testing
only, one can build predictive models by learning deci-
sion trees.1 We compare the quality of learned PLP-
trees and forests with those of learned decision trees.
Decisions trees turn out to be more accurate for domi-
nance testing. However, they have drawbacks. Decision
trees do not in general represent order nor partial order
relations. They do not provide any explicit information
about underlying orders and so, do not provide insights
into how agents whose preferences they aim to model
make decisions. Lastly, they do not lend themselves
easily to tasks involving preference optimization.

To summarize, our contributions are as follows. (1)
We proposed to model preferences by forests of PLP-
trees, aggregated by voting rules. We studied compu-
tational complexity of key reasoning tasks for the re-
sulting models. (2) We demonstrated that the models
we studied had higher predictive accuracy than that
given by a single PLP-tree, and by PLP-forest with the

1One can also learn random forests of decision trees. In
our experiments, decision trees show high accuracy and seem
robust to overfitting. Thus, we do not discuss here results
we obtained for random forests.

PMR. (3) We showed that for several voting rules the
orders obtained by aggregating PLP-forests are quite
close to each other. This alleviates the issue of select-
ing the “right” rule. (4) For the proposed PLP-forest
preference models, we developed methods to compute
optimal and near-optimal outcomes, the reasoning task
that has no natural solutions under models based on the
PMR. (5) We compared our models with those based
on decision trees. We showed that the latter are more
accurate but, as noted, have shortcomings in other as-
pects.

The higher accuracy of models based on decision
trees on the dominance testing task does not invali-
date PLP-tree based approaches, as they have impor-
tant advantages — they shed light on how agents make
decisions and support preference optimization. Rather,
they suggest an intriguing question of whether PLP-
trees (forests) could be combined with decision trees
(forests) retaining the best features of each approach.
One possibility might be to use PLP-trees to some top-
level partitioning of outcomes, with decision trees used
for low-level details.

Partial Lexicographic Preference Trees
and Forests

Let A = {X1, . . . , Xp} be a set of attributes, each at-
tribute Xi having a finite domain Di. The correspond-
ing combinatorial domain over A is the Cartesian prod-
uct CD(A) = D1 × . . .×Dp. We call elements of com-
binatorial domains outcomes.

A PLP-tree over CD(A) is an ordered labeled tree,
where: (1) every non-leaf node is labeled by some at-
tribute from A, say Xi, and by a local preference >i,
a total strict order on the corresponding domain Di;
(2) every non-leaf node labeled by an attribute Xi has
|Di| outgoing edges; (3) every leaf node is denoted by
�; and (4) on every path from the root to a leaf each
attribute appears at most once as a label.

Each outcome α ∈ CD(A) determines in a PLP-tree
T its outcome path, H(α, T ). It starts at the root of
T and proceeds downward. When at a node d labeled
with an attribute X, the path descends to the next
level based on the value α(X) of the attribute X in the
outcome α and on the local preference order associated
with d. Namely, if α(X) is the i-th most preferred value
in this order, the path descends to the i-th child of d.
We denote by `T (α) the index of the leaf the outcome
path H(α, T ) ends in (the leaves are indexed from left
to right with integers 0, 1, . . .).

We say that outcome α is at least as good as β
(αT �T β) if `T (α) ≤ `T (β). The associated equiva-
lence and strict order relations ≈T and �T are specified
by the conditions `T (α) = `T (β) and `T (α) < `T (β),
respectively.

The leaves of a PLP-tree can be indexed in time
O(s(T )), where s(T ) is the number of nodes in T (by
adapting the inorder traversal to the task). After that,
the value `T (α) can be computed in time O(h(T )),
where h(T ) is the height of tree T . Thus, assuming



the indices were precomputed, all three relations can
be decided in time O(h(T )).

To illustrate, let us consider the domain of cars de-
scribed by four multi-valued attributes. The attribute
BodyType (B) has three values: minivan (v), sedan (s),
and sport (r). The attribute Make (M) can either have
value Honda (h) or Ford (f). The Price (P ) can be low
(l), medium (d), or high (g). Finally, Transmission (T )
can be automatic (a) or manual (m). An agent’s pref-
erence order on cars from this space could be expressed
by a PLP-tree T in Figure 1.

B v > s > r

Mh > f

0 1

P d > l > g

2 3 4

5

Figure 1: A PLP-tree T over the car domain

The tree tells us that BodyType is the most important
attribute to the agent and that she prefers minivans, fol-
lowed by sedans and by sport cars. Her next most im-
portant attribute is contingent upon what type of cars
the agent is considering. For minivans, her most impor-
tant attribute is Make, where she likes Honda more than
Ford. Among sedans, her most important attribute is
Price, where she prefers medium-priced cars over low-
priced ones, and those over high-priced ones. She does
not differentiate between sport cars; they are least pre-
ferred.

To compare a Ford sedan with a middle-range price
and an automatic transmission (〈s, f, d, a〉, in our nota-
tion) and a Honda sedan with a high-range price and a
manual transmission (that is, 〈s, h, g,m〉), we traverse
the tree T . We see that the cars diverge on the node
labeled by attribute P , and that the Ford car falls to
leaf 2 and the Honda car leaf 4. Thus, the Ford car is
preferred to the Honda car.

A PLP-forest is a finite set of PLP-trees. When ex-
tended with a voting rule to aggregate orders given by
its constituent PLP-trees, a PLP-forest specifies a sin-
gle preference orders on the space of outcomes. In this
way, PLP-forests with voting rules can be viewed as
models of preference relations.

Voting in Partial Lexicographic
Preference Forests

To aggregate PLP-forests we consider the voting rules
Top-k Clusters, Plurality, Borda, Copeland, and Max-
imin. In our experiments, we also consider the earlier
model of PLP-forests combined with the PMR. In gen-
eral, the PMR does not yield a sensible preference rela-
tion as it suffers from the Condorcet paradox (Gehrlein
2002). Nevertheless, it performs well in dominance test-

ing (Breiman 2001; Liu and Truszczynski 2016). We
consider it here as the baseline for the voting rules.

The five voting rules are scoring rules. In our set-
ting, given a PLP-forest P they assign to each outcome
o the score Sr(o, P ) (where r refers to a voting rule).
The scores define the preference relation � as follows:
for every outcomes o, o′, we have o � o′ if and only if
Sr(o, P ) ≥ Sr(o′, P ). Clearly, the relation defined in
this way is a total preorder.

Below we introduce the five voting rules adjusted to
the setting of total preorders (they are commonly de-
fined for strict total orders), and the PMR.

Top-k Clusters (where k is a positive integer): For
an outcome o, we define Stkc(o, T ) = max{k− `T (o), 0}
and set

Stkc(o, P ) =
∑
T∈P

Stkc(o, T ).

Assuming that we precomputed indices of leaves in
all trees, which can be accomplished in time O(s(P )),
where s(P ) denotes the number of nodes in all trees
in P , we can compute Stkc(o, P ), for any outcome o,
in time O(t(P ) ∗ max{h(T ) : T ∈ P}), where t(P ) is
the number of trees in P . We note that Top Cluster
(k = 1) is a rule similar to approval, where each tree
approves all outcomes in the leftmost cluster (and only
those outcomes); and Top-k Cluster rules with k > 1
are its natural generalizations.

Plurality: Let `T0 be the set of most preferred out-
comes in a PLP-tree T (the set of all outcomes o with
`T (o) = 0). Next, let ∆T (o) = 1 if outcome o is a most
preferred in T , and ∆T (o) = 0, otherwise. We define
the Plurality score Spl(o, P ) by setting

Spl(o, P ) =
∑
T∈P

∆T (o)

|`T0 |
.

We can compute ∆T (o) and |`T0 | in timeO(h(T )). Thus,
Spl(o, P ) can be computed in time O(t(P ) ·max{h(T ) :
T ∈ P}).
Borda: Let T be a PLP-tree. We define `Ti to be the set
of all outcomes o with `T (o) = i (the ith cluster in the
order defined by T ). Let c(o) be the cluster containing
o (in our notation, c(o) = `T`T (o)). We define

Sb(o, T ) =

∑
1≤j≤|c(o)|

(n− j −
∑

0≤i<`T (o)

|`Ti |)

|c(o)|
,

where n is the size of the combinatorial domain. and
set Sb(o, P ) as follows:

Sb(o, P ) =
∑
T∈P

Sb(o, T ).

Assuming that the sizes |`Ti | of clusters and the quan-
tities

∑
0≤i<`

|`Ti |) are precomputed, which can be done

in time O(s(P )), we can compute Sb(o, T ) in time



O(h(T )). Consequently, Sb(o, P ) can be computed in
time O(t(P ) ∗max{h(T ) : T ∈ P}).
Copeland: Let us define NP (o, o′) to be the number
of trees T ∈ P such that o �T o′. Informally, NP (o, o′)
is the number of trees that declare o more preferred
to o′. If NP (o, o′) > NP (o′, o), then o wins with o′ in
P . If NP (o, o′) < NP (o′, o), then o loses to o′ in P .
The Copeland score Scp(o, P ) is given by the difference
between the number of pairwise wins and the number
of pairwise losses of O:

Scp(o, P ) =|{o′ ∈ C \ {o} : NP (o, o′) > NP (o′, o)}|
− |{o′ ∈ C \ {o} : NP (o, o′) < NP (o′, o)}|.

Maximin: This method (also also known as the
Simpson-Kramer method) is considered in several vari-
ants in which the definition of the Maximin scoring
function Sxn(o, P ) may include winning votes, margins,
and pairwise oppositions. In this paper, we will de-
fine it in terms of the margin for an outcome, that is,
the smallest difference between the numbers of pairwise
wins and pairwise losses against all opponents.

Sxn(o, P ) = min
o′∈C\{o}

(NP (o, o′)−NP (o′, o)).

Both the Copeland score and the Maximin score can
be computed in time O(n ∗ t(P ) ∗max{h(T ) : T ∈ P}),
where n is the size of the combinatorial domain.

Pairwise Majority Rule (PMR): The PMR is not
a scoring rule. We use it to decide preferences between
outcomes. Specifically, given two outcomes α and β,
α �pm β if NP (α, β) > NP (β, α). Thus, deciding pair-
wise preferences takes time O(t(P ) ∗ max{h(T ) : T ∈
P}).

Computational Complexity
In the previous sections we listed estimates of the run-
ning time of algorithms that could be used to compute
scores of the five scoring rules we consider. Here we
complete the discussion by considering the complex-
ity of two other problems QUALITY and OPTIMIZA-
TION. Let r be a scoring rule. Given a PLP-forest P
and an integer `, the QUALITY problem asks whether
there exists an outcome o such that Sr(o, P ) ≥ `.
Similarly, given a PLP-forest P , the OPTIMIZATION
problem consists of computing an outcome with the
highest score (an optimal outcome).

The picture for the rules Top-k Clusters, Plurality
and Borda is complete. As we noted above, the SCORE
problem for Borda is in the class P, and Lang et al.
(2012) proved that the QUALITY and OPTIMIZA-
TION problems for Borda are NP-complete and NP-
hard, respectively. The SCORE problem for Top-k
Clusters and Plurality is in P (our comments in the pre-
vious section) and the following two results show that
in each case, the problems QUALITY and OPTIMIZA-
TION are NP-complete and NP-hard, respectively.

Theorem 1. The QUALITY problem for Top-k Clus-
ters, where k is a positive integer, is NP-complete.

Table 1: Computational complexity results

SCORE QUALITY OPTIMIZATION

Top-k Clusters P NPC (Theorem 1) NPH
Plurality P NPC (Theorem 2) NPH

Borda P NPC3 NPH
Copeland #PH3 ? ?
Maximin ? coNPH3 coNPH

Proof. (Sketch) Membership is obvious, as one can
guess an outcome o in O(p) time, and verify that
Stkc(o, P ) ≥ l in polynomial time in the size of P .

Hardness for the case of k = 1 is straightforward. We
omit details due to space constraint. To prove hardness
for when k > 1, we reduce from the NP-complete prob-
lem MIN2SAT.2 For every clause C = Xi ∨ ¬Xj ∈ Φ,
we construct a set PC of three PLP-trees shown in Fig-
ure 2a, Figure 2b and Figure 2c. Here we note that, if
v |= C, we have Stkc(v, PC) = 3 · k − 4; otherwise, we
have Stkc(v, PC) = 3 · k− 3. We now set P =

⋃
C∈Φ PC

and l = g(3 ·k− 4) + (n− g)(3 ·k− 3) = 3n · (k− 1)− g.
We need to show that assignment v satisfies at most
g clauses in Φ if and only if v scores at least l in P
according to the Top-k Clusters rule.

Assuming there is an assignment v satisfying g′ ≤ g
clauses in Φ, we have Stkc(v, P ) = g′(3·k−4)+(n−g′)(3·
k−3) = 3n · (k−1)−g′ ≥ 3n · (k−1)−g = l. Similarly,
if v satisfies less than g clauses, we have Stkc(v, P ) < l.

Xi 0i>1i

Xj 1j>0j

(a)

Xj 0j > 1j

Xi 1i > 0i

(b)

Xj 1j > 0j

Xi 1i > 0i

(c)

Figure 2: Set PC of PLP-trees for clause C = Xi∨¬Xj

The next theorem concerns the Plurality rule. The
proof is similar to that of Theorem 1 when k = 1.

Theorem 2. The QUALITY problem for Plurality is
NP-complete.

Theorems 1 and 2 also show that the problem OP-
TIMIZATION for Plurality are NP-hard.

The SCORE, QUALITY and OPTIMIZATION
problems for Copeland and Maximin were studied by
Lang et al. (2012). However, the complexity bounds
were established in some cases only. We summarize in
Table 1 the computational complexity picture for all
voting rules we study in this paper.

2Given a set Φ of n 2-clauses {C1, . . . , Cn} over a set of
propositional variables {X1, . . . , Xp}, and a positive integer
g (g ≤ n), decide whether there is a truth assignment that
satisfies at most g clauses in Φ.

3cf. (Lang, Mengin, and Xia 2012)



Experiments and Results
PLP-trees and forests are difficult to elicit from users
directly. In practical settings they have to be learned
from examples of pairwise comparisons. A method to
learn PLP-trees was proposed by Liu and Truszczyn-
ski (2016). They also applied it learn PLP-forests and
aggregate them with the PMR. In this paper, we ex-
tend this work to the case when learned PLP-forests
(forests of learned PLP-trees) are aggregated by means
of voting rules.

Our main goals are to evaluate the ability of PLP-
forests extended with voting rules to approximate pref-
erence orders arising in practical settings, to compare
in this respect PLP-forest models with models based on
decision trees, to develop for PLP-forests effective tech-
niques to compute optimal or near optimal outcomes,
and to study the effect of the choice of a specific voting
rule on the quality of the model.
Datasets and Experimental Set-up
We implemented the scoring rules discussed above as or-
der aggregators for PLP-forests and experimented with
them on the twelve preferential datasets4 used by Liu
and Truszczynski (2016).

The PLP-forest learning procedure works as follows.
For each of the datasets, we randomly partition the set
of strict examples E�, generating a training set of 70%
of E� and use the rest 30% as the testing set. In the
training phase, we use the greedy learning heuristic (Liu
and Truszczynski 2016) to learn a PLP-forest of a given
number of PLP-trees, each of which is learned from
M (a parameter) examples selected with replacement
and uniformly at random from the training set. In the
testing phase, the trees in the learned PLP-forest are
aggregated using the seven voting methods, Top Clus-
ter, Top-2 Clusters, Top-3 Clusters, Plurality, Borda,
Copeland and Maximin, to predict testing examples
and to compute the social welfare rankings. We repeat
this procedure 20 times for each dataset.

For the task of predicting new preferences, we com-
pute and report average accuracy results, where the
accuracy is defined as the number of strict examples in
the testing set that are in agreement with the learned
model divided by the size of the testing set.

As we showed above, computing optimal outcomes
for PLP-forests using the Top-k Clusters rules is closely
related and can be reduced to solving MAXSAT prob-
lems. Thus, we proposed reductions of score computa-
tion for the three Top-k Clusters rules to the weighted
partial MAXSAT problem and used the MAXSAT
solver toulbar2 (Hurley et al. 2016) to solve them.

For the task of understanding the relationship among
the scoring rules, we calculate the Spearman’s rho for
Top Cluster, Top-2 Clusters, Top-3 Clusters, Plurality,
Borda and Maximin, all against Copeland.
Preference Prediction Results
We focus on PLP-forests of trees learned from small
sets of examples. This supports fast learning and leads

4https://www.unf.edu/∼N01237497/preflearnlib.php

to small constituent PLP-trees. In our experiments we
learned PLP-trees from samples of 50, 100 and 200 ex-
amples. The results, averaged over all datasets for the
Top-2 Clusters rule, are shown in Figure 3a. They show
that the testing accuracy is better when smaller PLP-
trees are learned. We saw similar behavior for other
scoring rules and so omitted the results from Figure 3a.
Based on these experiments, from now on we restrict
our discussion to PLP-forests with trees learned from
samples of size 50.

In Figure 3b, we present the mean learning curves
over all datasets for all 8 rules, where each curve shows
how testing results (accuracy percentages) change as
with the PLP-forest size (the number of trees in the
forest). We also show there the results for learning a
single PLP-tree and a single decision tree. Decision
trees in our experiments are classification trees trained
using labeled instances, where an instance consists of
two outcomes and has a binary label, 1 (0) indicating
the first outcome is (is not, resp.) strictly preferred to
the second. Given a decision tree D and two outcomes
o, o′, the dominance testing query asks if it is true that
o is strictly preferred to o′ in D. To answer a such
query for testing, two outcomes are fed to a decision
tree. If the predicted is 1, we answer yes to the query;
otherwise, no.

First, we observe that independently of the rule used
the PLP-forest models across all datasets outperform
the single PLP-tree model. This is most notable for the
Borda rule, with a 4% improvement from 87% for single
PLP-trees to 91% for PLP-forests. Pairwise Majority
used by Liu and Truszczynski (2016) turns out to be
the worst aggregating method overall.

Moreover, looking at the results for 1000-tree forests,
we see that, these forests have high accuracy of about
89∼91%, on the testing datasets, depending on the vot-
ing rule. This provides strong evidence for the adequacy
of the PLP-forest model to represent user preferences
over practical combinatorial domains. This also demon-
strates that the differences between these voting rules
in predicting new preferences are not significant. In
particular, the Top-3 Clusters rule finishes 90%, only a
percentile point difference from Borda.

Our results also show that decision trees perform bet-
ter on our datasets with accuracy of about 99%. We
attribute the near-perfect performance of the decision-
tree model to their large size enabling classifying with
high-granularity whether one outcome is preferred to
another. However, the decision-tree model has draw-
backs. It does not guarantee that the relation it de-
termines is an order or a partial order, it does not of-
fer clear explanations what factors affect comparisons,
and it does not support computing optimal and near-
optimal outcomes. In each of these aspects PLP-forest
models have an advantage.
Preference Optimization Results
PLP-forests with scoring rules allow for effective op-
timal outcome computation. We demonstrate it be-
low for orders obtained by using Top, Top-2 and Top-3



100 200 300 400 500 600 700 800 900 1000

Forest size

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
c
c
u

ra
c
y
 o

n
 T

e
s
ti
n

g
%

50 Examples

100 Examples

200 Examples

(a) Mean testing accuracy across all datasets for
PLP-forests applying Top-2 Clusters, where every
member tree is trained using random samples of
sizes 50, 100 and 200.

100 200 300 400 500 600 700 800 900 1000

Forest size

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
c
c
u

ra
c
y
 o

n
 T

e
s
ti
n

g
%

Decision Tree

Borda

Copeland

Top-3 Clusters

Plurality

Top-2 Clusters

Top Cluster

Maximin

Pairwise Majority

PLP-Tree
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100 200 300 400 500 600 700 800 900 1000

Forest size

0

20

40

60

80

100

120

140

160

180

200

T
im

e
 t

o
 C

o
m

p
u

te
 O

p
ti
m

a
l 
(m

s
)

Top Cluster

Top-2 Clusters

Top-3 Clusters

(c) Mean time across all datasets computing op-
timal outcomes using Toulbar2 for PLP-forests
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Clusters.
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(d) Mean results across all datasets evaluating op-
timal outcomes for PLP-forests applying Top Clus-
ter, Top-2 Clusters and Top-3 Clusters, against
other voting rules and decision trees.

Figure 3: Preference learning and optimization results for PLP-forests

Clusters rule to aggregate orders defined by individual
PLP-trees in a PLP-forest.

For every dataset, we learn PLP-forests of up to 1000
PLP-trees. To compute the optimal outcome in each
forest (under Top, Top-2 or Top-3 Clusters rule), we
encode the problem as a weighted partial MAXSAT in-
stance and use toulbar2 to solve it. Average compu-
tational time spent on searching for optimal outcomes
using for all datasets is shown in Figure 3c. We see
that, for any dataset for any forest size up to 1000,
a weighted partial MAXSAT instance encoding prefer-
ence optimization can be solved within 0.2 sec.

The reductions are straightforward for the Top-k
Clusters rules. It is not clear how to extend them to
other scoring rules. Instead, we show that optimal out-
comes computed for the three of the Top-k Clusters
rules are close to optimal for orders obtained for other

rules. Specifically, for every optimal outcome com-
puted based on Top-k Clusters rule (k = 1, 2, 3) and
every dataset, we randomly select 1000 outcomes and
check how well the optimal outcome compares to them,
when other voting rules (Plurality, Borda, Copeland
and Maximin) are used. Average percentiles of the
number of outcomes “beaten” by the optimal one are
shown in Figure 3d. We note that, when forests are
big, the optimal outcomes based on the three Top-
k Clusters rules are either very likely optimal (when
the percentiles are exactly 100%) or very likely near-
optimal (when the percentiles are not 100% but very
close to), for all other voting rules. This is desirable
because it shows that computing optimal outcomes for
orders determined by Top-k Clusters rules, which we
demonstrated to be computationally feasible, are likely
optimal or near-optimal for rules where methods to op-



Table 2: Mean and standard deviation of the Spear-
man’s rho results for voting rules against Copeland
across all datasets in learning PLP-forests of size 1000

Dataset Borda Top-3 Top-2 Maximin Plurality Top

Mean 0.95 0.91 0.90 0.89 0.88 0.87
SD 0.14 0.14 0.06 0.13 0.12 0.12

timize preferences are not straightforward. For decision
trees, the results show that outcomes optimal for Top-k
Rules are further from optimal but still within the top
20% of outcomes according to the decision-tree model.

Rank Correlation Results

In the standard voting setting, the rankings generated
by different voting rules are quite close to each other
(Mattei 2011; Felsenthal, Maoz, and Rapoport 1993).
For the setting of combinatorial domain setting, when
preference orders are given as PLP-forests (with scor-
ing rules as aggregators), the results we discussed in the
previous sections suggest that that here, too, the choice
of a voting rule does not affect the order significantly
(all rules result in models of similar accuracy and out-
comes highly preferred for one rule are highly preferred
for other).

Specifically, we empirically studied the correlation to
orders determined by the Copeland rule of orders de-
termined by the other scoring rules we studied. As
suggested in previous work on measuring rank cor-
relation (Myers, Well, and Lorch 2010; Mattei 2011;
Felsenthal, Maoz, and Rapoport 1993), we used the
Spearman’s rho (denoted by ρ) as the rank correlation
coefficient.

Our results (cf. Table 2) suggest that Borda-gene-
rated orders have a very high degree of consensus with
those generated by Copeland, and that Plurality and
Top Cluster lead to orders with the lowest degrees of
agreement. Nevertheless, in all cases the Spearman’s
rho has high values, similar to those obtained for strict
preference orders over non-combinatorial domains with
few outcomes (Felsenthal, Maoz, and Rapoport 1993;
Myers, Well, and Lorch 2010; Mattei 2011).

Conclusions and Future Work
We proposed to use PLP-forests extended with a vot-
ing rule as a model of preference relations. We consid-
ered five voting rules, Top-k Clusters, Borda, Plurality,
Copeland and Maximin, all adjusted to the case of to-
tal preorders. We studied the complexity of three key
preference reasoning problems arising in this setting:
SCORE, QUALITY and OPTIMIZATION. For Top-k
Clusters, Borda and Plurality, our results, together with
those obtained earlier in the literature, provide a com-
plete picture. In all cases, the SCORE problem is in P,
the QUALITY problem is NP-complete and the OP-
TIMIZATION problem is NP-hard. For the Copeland
and Maximin rules, investigated by Lang at al. (2012),
only some results are known. However, they suggest the
two rules may be more demanding computationally.

We studied our PLP-forest models experimentally.
Our results showed that using these voting rules for
preferential datasets generated from real-world classifi-
cation datasets yields models reflecting underlying pref-
erence relations with high accuracy, exceeding that of
PLP-forest models utilizing the Pairwise Majority rule.

We also studied the correlation among the orders
given by different PLP-forest models, extending to the
setting of “votes” over combinatorial domains several
earlier studies in the standard voting setting with a
small number of alternatives. We found that when com-
pared to the model given by PLP-forests with Copeland
as an aggregator, all models showed high levels of corre-
lation, similar to those reported in the literature for the
standard voting setting. Our results suggest that using
rules such as Borda or Top-3 clusters (the two closest to
Copeland) produces orders representative for all those
that can be obtained by combining a PLP-forest with
a scoring rule.

For the Top-k Clusters rule, we developed methods
to compute optimal outcomes for orders they deter-
mine given a PLP-forest. Our experiments for when
k = 1, 2, 3 showed that the methods are computation-
ally feasible. They also show that optimal outcomes
computed for the Top-k Clusters rules are near optimal
for orders determined by all other scoring rules.

Our results suggest that PLP-forest preference mod-
els with scoring rules as aggregators, especially Top-
k Clusters and Borda, have many attractive features.
They can be learned so that to reflect underlying true
preference relation with high accuracy. They represent
well orders they result from using other scoring rules.
Lastly, they support fast methods for computing opti-
mal outcomes and these outcomes are likely to be near
optimal for orders given by other scoring rules.

We also compared out PLP-forest models with the
decision tree approach. The decision trees learned
from examples can approximate underlying orders with
higher accuracy (as high as 99% in our experiments).
However, they do have drawbacks not present in PLP-
forest models. First, the relation they define is not
guaranteed to be a total order (not even a partial or-
der). Second, they do not provide any clear insights
into key factors determining the underlying preference
relations. Lastly they do not offer any effective ways
to solve optimization tasks (finding optimal or near op-
timal outcomes). These drawbacks make PLP-forests,
despite their lower accuracy, an attractive preference
model for use in applications.

Improving the accuracy of the PLP-forest model is
the main challenge for future work. There seem to be
two natural directions. First, one can explore a possibil-
ity of combining the PLP-forest and decision-tree mod-
els, for instance, by using decision trees at leaf nodes of
PLP-trees for comparison tests of outcomes in the cor-
responding clusters. Second, one can investigate new
PLP-tree learning algorithms.
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