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Abstract 
In this paper, we describe Jigsaw: a suite of AI software 
tools for deep-space nano-satellite (“NanoSat”) 
communication scheduling. Jigsaw is intended to support 
the 13 NanoSat missions set to launch on NASA’s Space 
Launch System (SLS) / Orion Exploration Mission 1 (EM-
1) in 2019.  

Rather than have each of these missions independently 
submit requests to the Deep Space Network (DSN) process 
and negotiate with all other competing missions, Jigsaw 
can be used to generate a joint request that has already 
eliminated conflict among the 13 missions.  This can 
greatly reduce the cost of scheduling and negotiating for 
each mission. This is especially useful during the first week 
of the EM-1 mission when all the spacecraft have critical 
events and are all competing for the same DSN assets. 

In order to automate this deconfliction process, the 
communication pass requests from the individual missions 
include both the minimal requirements and the ideal 
preferences, and each pass is assigned a priority. The 
constraints and preferences specified in the requests are 
used to guide the generation of a joint schedule that 
satisfies all constraints, maximizes the achievement of the 
preferences, and is fair across the missions. 

We describe the specification of the communication 
requests, which contain both hard constraints and 
preferences, and then we describe our current approach to 
solving this scheduling problem.  The approach is 
exemplified on a realistic example involving three of the 
EM-1 NanoSat missions.  

Introduction 
Missions involving small spacecraft are attracting an 
increasing amount of attention by the space research 
community due to the many advantages they bring to the 
table. Small spacecraft provide a means of performing 
scientific observations, as well as, demonstrating new 
technologies, with limited risk and cost. 

The first cadre of 13 interplanetary NanoSat missions, 
is set to launch on NASA’s Space Launch System (SLS) / 
Orion Exploration Mission 1 (EM-1) in 2019. Many of the 
missions will need to rely on the powerful antennas of 
NASA’s Deep Space Network (DSN) to provide 
communication between their NanoSat and ground 

controllers. Each of these stand-alone missions will be 
faced with the prospect of a lengthy and costly 
communications scheduling negotiation for their early 
mission critical event coverage.  This will be a process 
that the missions likely haven’t allocated sufficient budget 
for, yet one that they will be required to participate in, 
such that some of their most critical events (e.g. trajectory 
correction maneuvers) will be successful. 

The DSN’s existing scheduling process and software is 
highly successful at balancing the needs of 30+ missions 
when those missions are distributed throughout the solar 
system and when data return needs can be balanced over 
long periods of time.  However, their processes are not 
optimized to support the situation that EM-1 will present, 
where 13 NanoSats will be in the same area of the sky, 
continually competing for the same assets, and where they 
rely on the missions themselves to negotiate time 
collaboratively.  Similar negotiations on a pair of co-
manifested Moon-bound missions in 2009 took 2 months, 
and only yielded about 15% contingency case coverage.  
While the DSN is planning some system improvements to 
support NanoSat missions, intense over-subscription 
issues are likely to persist. 

The Jigsaw software effort has started to address this 
problem by adapting artificial intelligence scheduling and 
preference optimization techniques. The goal is to allow 
the DSN and its NanoSat mission customers to efficiently 
and accurately construct early mission communication 
schedules, when contention for ground antennas will be 
highest. If successful, employing Jigsaw to help manage 
early-mission EM-1 critical events will drastically reduce 
the amount of time (potentially up to 100 times), and 
hence funds, that it will take to create a viable early-
mission DSN schedule for the EM-1 launch. 

Rather than have each of these missions independently 
submit requests to the DSN process and negotiate with all 
other competing missions, Jigsaw can be used to generate 
a joint request that has already eliminated conflict among 
the 13 missions. In order to automate this deconfliction 
process, the communication pass requests from the 
individual missions include both the minimal requirements 



and ideal preferences, and each pass is assigned a priority. 
The constraints and preferences specified in the requests 
are used to guide the generation of a joint schedule that 
includes as many requests as possible, does not violate any 
hard constraints, maximizes the achievement of the 
preferences on pass durations and start times, and is fair 
across the missions in terms of resource allocation. 

Our current approach involves two phases.  In the first 
phase, a schedule is generated that tries to satisfy the 
minimal requirements specified in the requests from all 
the missions.  In the second phase, this minimal-
requirements schedule is improved as much as possible, 
based on the ideal preferences expressed in the requests.  
In both phases, the schedules respect the request priorities 
and are fair across all missions. In this paper, we first 
present background information on the EM-1 mission, on 
the DSN’s structure, and its scheduling process. Secondly, 
we describe our specification language and process for 
communication requests.  We then describe our two-phase 
approach to solving this scheduling problem and for the 
second phase, we present two alternative techniques for 
optimizing the preferences.  We illustrate Jigsaw’s 
operation with a realistic set of requests based on three of 
the EM-1 NanoSat missions. 

The EM-1 Mission 
In late 2019 NASA will launch its new heavy-lift rocket, 
the Space Launch System (SLS), carrying the Orion crew 
capsule. This being the first test flight of the SLS/Orion 
beyond low earth orbit, NASA has designated the mission 
“Exploration Mission 1 (EM-1)”. While the crew capsule 
will be unmanned on EM-1, the rocket will be carrying 
along 13 NanoSats. These NanoSats, each only about the 
size of a shoe-box, are entire missions onto themselves, 
and will be deployed from the upper stage of the SLS at 
various points along the rocket’s trajectory between the 
Earth and the Moon (see Figure 1). 

These 13 missions, some NASA sponsored, others 
Industry or International sponsored, are groundbreaking. 
While academia and the aerospace industry have been 

developing and deploying NanoSats of increasing 
capability over the last decade, these missions represent 
the first cadre of interplanetary NanoSat missions, tasked 
with exploring regimes outside of the Low Earth Orbit 
(LEO). The Moon, an asteroid and interplanetary radiation 
are some of the research targets for these missions. 

Of course, with any new paradigm, comes a new set of 
challenges. In the case of the EM-1 NanoSats, scheduling 
of ground-based antenna dishes and communications 
equipment, is one of them. The only dishes large enough 
to support talking with these tiny spacecraft (with 
correspondingly tiny radios) are contained within NASA’s 
Deep Space Network (DSN). The DSN is already one of 
NASA’s communications workhorses supporting all of 
NASA’s deep space missions including New Horizons, 
the Mars Rovers, and Kepler. Successfully integrating up 
to 13 new missions for the DSN to support in the matter of 
a day, presents a unique resource scheduling challenge.  

Deep Space Network Scheduling  
The DSN comprises a collection of large diameter antenna 
dishes or “stations”, and radio frequency processing 
equipment at three geometrically distributed locations or 
“complexes”. The DSN complexes, in Goldstone, CA 
(USA), Madrid (Spain) and Canberra (Australia) are 
located approximately 120 degrees of longitude apart, 
such that nearly any deep space location (e.g. Mars, Pluto) 
is above the local horizon, and hence can be “viewed” by 
an antenna of at least one of the complexes at any time of 
the day. Each complex has between three and five 34-m 
diameter antenna dishes, as well as a single 70-m dish.  
 Each of the stations can support a variety of “services” 
according to the needs of the mission it is supporting; the 
most common services include: 

• Telemetry Downlink (data communication from 
the spacecraft to the ground antenna), 

• Command Uplink (data communication from the 
ground antenna to the spacecraft),  

• Doppler tracking (measurement of frequency 
shifts in the downlink signal, from which relative 
velocity between the spacecraft and the ground 
antenna can be derived), and  

• Range tracking (time of flight measurement of a 
signal sent up by the ground antenna, received 
and retransmitted by the spacecraft, from which 
distance between the spacecraft and the ground 
antenna can be derived). 

Each DSN mission customer is unique with respect to 
which combinations of services are required, and with 
respect to when and for how long the services are 
required, with those needs usually being dependent on the 
phase of the mission. For example a mission attempting to 
enter the orbit of another planet, might require Doppler 
and range tracking several hours before the time of the 
planetary encounter, then uplink, downlink and tracking 

Figure 1: EM-1 Mission. 



through the time of orbit capture and for an hour 
afterwards. Later in the mission however, the requirement 
might relax to just two hours of concurrent uplink and 
downlink time per week, such that all of the data collected 
on-board during that week can be transmitted to the 
ground. Frequently, antenna size and/or capability are also 
factors in how a mission uses the network (e.g. spacecraft 
at or beyond the outer planets require use of the 70-m 
station due to its higher receive and transmit gain). 
 Production of a network-wide conflict-free schedule is 
the responsibility of the entire DSN mission set. That is, 
the scheduling of assets is community-driven rather than 
priority driven. While the established processes by which 
the community arrives at the network schedule are well 
outside the scope of this paper, some key terminology and 
concepts are useful to understanding the Jigsaw context. In 
the end, DSN stations are allocated to missions for blocks 
of time, referred to as “tracks”. Each track is created with 
a combination of the services described above. The 
minimum track time is usually on the order of 30 minutes, 
maximum track lengths are sometimes as long as 10 or 11 
hours, corresponding to horizon-to-horizon tracking of the 
spacecraft by a station (think of the Moon “rising”, then 
“setting” about 10 hours later). 
 In addition to tracking time, the schedule also includes 
time between tracks on individual stations for the station 
operators to transition from supporting one mission to 
supporting another. A variable-length “set up” is always 
scheduled prior to the start of the track, and a 15-minute 
“tear down” scheduled after the end. The duration of the 
“set-up” is dependent on which services are selected for 
the given track; minimum of 30 minutes, maximum of 75 
minutes. 

Jigsaw Approach  
In this section, we first describe how the mission teams 
specify the communication requests and how they express 
their preferences regarding the durations and start times of 
the requested passes.  Secondly, we describe the first 
phase of our approach, which involves generating a 
schedule that attempts to satisfy the minimum 
requirements implied by the set of requests.  The second 
phase involves optimizing this minimum requirement 
schedule in terms of the preferences. We present two 
different approaches to this preference optimization 
process; the first alternative only tries to optimize the 
duration preference, and the second alternative attempts to 
optimize both duration and start time preferences.  These 
approaches are illustrated on an example problem based 
on the BioSentinel mission, the Lunar Flashlight mission, 
and the Near-Earth Asteroid (NEA) Scout mission. 
  

Communication requests with preferences 
We use the Open Source Scheduling and Planning 
InterFace for exploration (OpenSPIFe) (for details see 
https://github.com/nasa/OpenSPIFe/wiki), an open source 
software managed by NASA Ames Research Center, to 
create communication pass requests, which are 
represented as activities in a timeline. The important 
events of each NanoSat mission and the EM-1 mission are 
also represented on timelines to give context. In addition, 
the SPIFe resource displays show the following state 
resources to help the mission teams place their requests: 

• For each DSN station (antenna), when has the 
station been allocated for use by the NanoSat 
missions; determined by the DSN. 

• For each DSN complex and NanoSat mission 
pair, when is the complex in view of the NanoSat 
for uplink communication; determined by the 
predicted mission trajectory. 

• For each DSN complex and NanoSat mission 
pair, when is the complex in view of the NanoSat 
for downlink communication; determined by the 
predicted mission trajectory. 

The Activity Dictionary includes an activity type to 
represent each mission’s pass requests (e.g., 
BIOS_PASS_REQUEST for requests from the 
BioSentinel mission), and each of these request activity 
types include the following parameters: 

• Ideal and Minimum pass duration 
• Pass Type (Uplink-Downlink with/without 

ranging, or Downlink only) 
• Antenna Type (Band Wave Guide (BWG), High 

Efficiency (HEF), Any) 
• DSN Complex (Canberra, Goldstone, Madrid, 

Any) 
• Event reference or date reference 
• Largest, ideal, and smallest factor before 
• DSN criticality 
• Mission priority 
• Whether to add a backup pass 
• Backup tolerance factor. 

The earliest, the ideal, and the latest that the requested 
pass can start are computed as offsets from the reference 
date.  The date reference is an absolute date; thus, it 
specifies the reference date explicitly.  The event reference 
specifies one of the mission’s critical events (e.g., 
deployment from EM-1); the derived reference date, in 
this case, is the start time of the specified event.  More 
specifically, the offsets from the reference date are 
computed as the product of the pass duration and the 
appropriate “factor before” parameter: earliest start time 
uses the largest factor before, ideal start time uses the ideal 
factor before, and the latest start time uses the smallest 
start time before.   

The offset is subtracted from the reference date (either 
the absolute date or an event’s start time).  Note that these 
three factors can be positive or negative; if positive, the 



computed start time constraint (earliest and latest) or 
preference (ideal) is before the reference date, and if 
negative, they will be after the reference date. 

As an example, suppose the reference date is noon on a 
particular date, and the request parameters are as follows: 

• Largest factor before = 1.0 
• Ideal factor before = 0.50 
• Smallest factor before = -0.20 
• Minimum pass duration = 1 hour 
• Ideal pass duration = 2 hours 

If we consider the minimum pass duration, then the pass is 
constrained to start within the interval [11:00, 12:12], with 
an ideal start time of 11:30. Likewise, if we consider the 
ideal duration, then the pass is constrained to start within 
[10:00, 12:24], with an ideal start time of 11:00. 

The backup tolerance factor determines how far the 
backup pass can be shifted (right or left) from the 
associated primary pass.  The start time offset and end 
time offset is computed as the product of tolerance factor 
and the pass duration. 

Note that in this problem domain, the start time 
preference and the pass duration preference are not 
independent, and this dependence between preferences is a 
unique challenge in the work that’s been done on planning 
and scheduling with preferences. 

Example problem 
The example problem that we have been using to 
demonstrate feasibility of our approach uses representative 
schedule requests from three of the EM-1 NanoSat 
missions: BioSentinel (a deep-space radiation biology 
experiment), Lunar Flashlight (a lunar science mission), 
and NEA Scout (a near-Earth asteroid mission).  Figure 2 
shows the full set of requests from these missions, in the 
context of their key mission events (e.g. trajectory 
correction maneuvers) and overall EM-1 mission events 
(e.g. launch time). The requests were based on preliminary 
mission operations plans for each mission. For example 
BioSentinel doesn’t have any propulsive maneuvers, so its 
request is for three short passes per day for state of health 
checking. On the other hand NEAScout and Lunar 
Flashlight do have maneuvers, so their requests are more 
substantive, with longer passes both before and after the 
maneuvers to gather tracking data. 
 Figure 2 shows all of the requests in the Example 
Problem, with each mission on its own row in the 
timeline. The pass duration and start times shown are the 
ideal values, but preference information for each pass, 

which includes a minimum duration and earliest or latest 
start time were also captured. 

As an example of preference specifications, we consider 
a request for the NEA Scout mission, whose purpose is to 
observe a maneuver. In this case, the minimum and ideal 
durations are 2.5 and 4 hours, and the largest, ideal, and 
smallest factors are 0.7, 0.5, and 0.2. This means, 
assuming a duration of 3 hours, that ideally the event will 
occur in the middle of the pass and the pass will not be 
scheduled to start earlier than 126 minutes before the 
event and no later than 30 minutes before the event.   

 There is a total of thirty-seven requests in the Example: 
fourteen from BioSentinel, twelve from Lunar Flashlight, 
and eleven from NEA Scout, plus 3 backups.  

Generating minimum requirement schedules 
The first phase of our current approach involves 
generating a schedule that attempts to satisfy the minimum 
requirements of all the missions’ requests. The pass 
durations used are the minimum durations specified in the 
requests. No attempt is made to schedule a pass close to its 
ideal start time; in fact, the passes are scheduled as early 
as possible, in order to avoid leaving gaps in the schedule. 
Any backup passes are considered only after all primary 
passes have been attempted to be scheduled. 

The scheduler uses a random sampling approach, where 
on each sample, a schedule is incrementally constructed 
via a sequence of random choices, and then it is checked 
for validity. If the schedule is invalid, it is discarded, if it 
is valid, it is compared to the current best schedule to 
determine whether it became the new best schedule. 
During the incremental construction, the sequence of 
choices are as follows: 

1. Randomly choose a requested pass to schedule. 
2. Randomly choose a possible station on which to 

schedule the pass. 
3. Randomly choose a possible schedule window to 

insert the pass. 
4. Randomly choose a predicted DSN setup 

duration to use (unless one already exists in the 
schedule). 

In Step 2, the set of possible stations that can service a 
request is restricted by the request’s antenna type and 
complex parameters.  It is also restricted by what stations 
have been allocated by the DSN for the EM-1 missions 
and by the in-view windows (uplink and down view 
periods, depending on the request pass type parameter).  
Lastly, it is restricted based on the current schedule for 

Figure 2: Pass requests and mission events in SPIFe. 



each station; that is, there has to be an open slot in the 
station schedule big enough to fit the minimal-duration 
pass.  There could be more than one open slot in a station 
schedule that can accommodate the pass.  In Step 3, one of 
these open slots is randomly chosen and the pass is 
scheduled at the earliest time in that slot. 

If there already is a setup activity scheduled for a prior 
pass of the same mission and the gap between the two 
passes is not larger than one hour, then no additional setup 
is inserted.  Otherwise, a setup activity is scheduled before 
the pass and the setup duration is randomly chosen 
between the duration required by the pass and the 
maximum setup duration of one hour (Step 4). We insert a 
potentially longer duration setup than is currently required 
because, later in the scheduling process, another pass from 
the same mission may be scheduled after the current pass, 
serviced by the same setup, and this new pass may require 
a longer setup time than the current pass does. The actual 
setup durations can only be determined in the context of 
the complete schedule; this poses a unique challenge to 
constructing the schedule in an incremental fashion. 

A schedule is valid if the predicted setup durations are 
at least as large as the actual setups needed. The 
schedule’s evaluation is based primarily on the priorities 
of the requests that did not fit into the schedule and 
secondarily on the fairness across the different missions 
with respect to the percentage of requests unscheduled. 
The lower the score, the better the schedule quality. 

For each primary pass not in the schedule, the priority 
score is incremented by the exponential of 10 raised to the 
(1 – pass priority). Thus, the more important the pass (i.e., 
the lower the priority integer), the larger the penalty for 
not scheduling the pass. For the priority factor of the 
score, the backup passes that are missed are treated as if 
they have a priority two more (i.e., less important) than the 
associated prime pass does.   

The fairness across prime passes and across backup 
passes is computed separately.  The fairness scores are 
based on the differences, across the missions, of the 
proportion of requests that are not scheduled.  The ideal 
fairness has a difference metric of zero. 

The factors are weighted and summed as follows: 
(10000 * priority score) + (100 * prime fairness score) + 
backup fairness score. The number of setup activities is 
used as a tie breaker, where the schedule with fewest 
setups is preferred. 

We will now describe two options for phase two of the 
Jigsaw approach which attempt to improve the quality of 
the minimum requirement schedule by optimizing the 
preferences. 

Optimizing pass duration via binary search 
This approach to optimization combines the (previously 
described) random sampling scheduler together with 
binary search to try to uniformly optimize the durations 

towards the ideal.  It does not attempt to optimize the start 
times.  It uses the following steps: 

1. Input the minimum requirement schedule and 
remove from the set of requests any primary or 
backup passes that did not get scheduled. 

2. With only the remaining accepted requests, 
reformulate the input using durations that are 
intermediate between minimal and ideal.  These are 
chosen to support a search for improved durations 
that still satisfy the accepted requests. 

The search algorithm iterates over the priority values p 
from highest to lowest and uses the following scheme to 
set the request durations in each iteration. 

(a) Use the already computed best duration for 
requests of higher priority than p. 

(b) Use the minimum duration for requests of lower 
priority than p. 

(c) Do a binary search for the uniformly best duration 
of requests whose priority is p.  

The binary search for the uniformly best duration is 
interpreted as seeking the highest alpha between 0 and 1 
such that all the accepted requests can be scheduled with 
the pass durations set to (1 - alpha) * minimum duration + 
alpha * ideal duration. 
 Note, that the optimization is lexicographic with respect 
to priorities.  Thus, it treats durations of higher priority 
requests as being infinitely more important than those of 
lower priority requests. An egalitarian alternative could 
seek the uniform best for all the requests, then seek further 
improvements for successively higher priorities.  This 
would result in alpha values that vary monotonically with 
the priorities, but it is unclear whether it would better suit 
mission needs. 

Optimizing pass duration and start time 
The second optimization technique, which we denote as 
Stretch-and-Shift, takes as input the minimum requirement 
schedule (described previously). It then performs the 
following steps: 

1. The minimum requirement schedule is scanned for 
all opportunities of increasing the duration of 
passes.  All passes that can be stretched are binned 
into groups corresponding to missions and are 
sorted in decreasing order of mission priority. 
Whenever possible, tie breaks are applied using the 
DSN criticality. 

2. Passes are extracted from the bins in a round-robin 
fashion until all bins are empty. For each extracted 
pass, its duration is stretched to the minimum 
between its ideal duration and the available time. 
The minimum increase in duration is set to 5 
minutes and stretching is applied bilaterally until 
either one side gets saturated or the ideal duration is 
reached.  If one side is filled, and the ideal duration 
is not reached, then, the stretching continues on the 
other side. Once the duration is optimized the 



preference over the start time is computed as 
described in Section “Communication Requests 
with Preferences”. The pass is then rigidly shifted in 
order to bring the start-time as close as possible to 
its ideal time-point, given the duration. 

We note that this approach is based on the assumption that 
increasing the duration of a pass is more important that 
optimizing the start time. Moreover, fairness in the 
optimization process is ensured by the round-robin 
strategy applied to select candidate passes. Finally, 
priorities are respected by giving passes with a high value 
precedence in terms of optimization. 

Results on example problem 
We now describe the results obtained by the optimization 
approaches on the example problem which we have 
described earlier. 
Both solvers were given in input the same minimum 
requirement solution, which scheduled 34 out of 40 
requests (where 3 of the unassigned requests were 
backups) assigning minimum durations and earliest 
feasible start times to the activities. 
 

 Priority 1 Priority 2 Priority 3 Priority 4 

Binary Search 100% 0% 75% 100% 
Bin. Search 

Egal. 

75% 25% 25% 25% 

Stretch-and-

Shift -Duration 

99% 56% 80% 77% 

Stretch-and-

Shift - Start 

76% 58% 38% 72% 

Table 1: Increase in duration and start time obtained by 
three optimization methods. Averaged by priority groups. 

The first three rows of Tables 1 and 2 show the 
improvements obtained, with respect to the minimum 
requirement solution, in terms of duration for standard and 
egalitarian binary search and for the stretch-and-shift 
approach. The last row of both tables shows the 
improvement in terms of start time for the stretch-and-
shift approach. All improvements are expressed as 
percentages. In particular, the first three rows of Table 1 
and Table 2 show the percentage of increase in duration 
achieved by the three methods with respect to obtaining 
the ideal duration. The last row of the tables show how 
much closer, in percentage, the shifting procedure was 
able to move the start time of the activities to their ideal 
values. All percentages are averaged, in Table 1 by 
priority and in Table 2 by mission.   
We note that the quality of the solution found by the 
binary search approach to optimization is affected by two 
preset parameters: the number of random trials used by the 
underlying solver; and the resolution of the alpha values 
in the binary search.  The results shown here were 
obtained with 15,000 trials and 1/8 resolution. 

Note the improvement to the ideal duration for the highest 
priority requests in the case of binary search had the effect 
of limiting the second-highest to their minimum durations.  
The alternative, more egalitarian, method described in the 
binary search section achieved lower overall 
improvements with the same preset parameters but with a 
fairer distribution across missions. 
 

 NEAS LFLI BIOS 

Binary Search 66% 69% 80% 
Bin.-Search 

Egal. 
39% 33% 29% 

Stretch-and-

Shift -Duration 
67% 81% 90% 

Stretch-and-

Shift - Start 
47% 49% 83% 

Table 2: Increase in duration and start time obtained by 
three optimization procedures. Averaged by mission. 

In the case of the Stretch-and-Shift algorithm we also 
tested the impact of changing the order of the missions in 
the round-robin. In this example such order turned out to 
be irrelevant.  

We remark that the results we report only pertain to the 
execution of our method on an example which was 
designed as a realistic representation involving three 
missions. Our near future agenda, as discussed later, 
includes testing the methods on more realistic examples 
including all 13 missions and on synthetic instances 
appropriately generated to resemble scenarios relevant to 
the EM-1 mission.  

Related Research 
Optimization in the context of communication scheduling 
has recently been investigated, mainly in response to the 
current DSN oversubscription problem. The work 
described in (Pinover et al., 2017), references the same 
mission as a Jigsaw, and shows the infeasibility of an 
approach which tries to relegate time slots for small 
satellites to residual gaps left open by the other 35 
missions currently handled by the DSN (opportunistic gap 
filling). The authors propose block scheduling, which is an 
approach based on collapsing several small satellites 
flying in sufficiently tight formation into a single entity in 
terms of communication scheduling. This has many 
benefits, among which is the simplification of the final 
deconfliction phases, which are still tasked to humans, and 
the optimization in terms of the number of setup and 
teardown times. This approach is indeed complementary 
to ours. On one side, it does not address the incorporation 
of mission manager’s preferences in terms of duration and 
start times and it does not provide any guarantee in terms 
of fairness among missions. On the other side, it optimizes 



with respect to complex global DSN constraints which we 
treat as strict a priori requirements. 
 Another particularly interesting paper (Augenstein, et 
al., 2016) addresses the topic of scheduling constellations 
of Earth-orbiting satellites using a mixed-integer linear 
programming (MILP) approach.   While the context and 
constraints are different, and the nonlinear preference 
dependency aspect of Jigsaw does not lend itself to an 
MILP formulation, the paper introduces several intriguing 
ideas, including compiling complex requirements into 
simpler mutual exclusion constraints.  Unfortunately, this 
technique seems not to be applicable in our case because 
of global interactions involving the setup and teardown 
needs of the different requests. 
In (Skobelev, et al., 2014) the authors tackle a similar 
problem to the one considered here, with a multi-agent 
technique where a schedule emerges from the interaction 
and trade-offs of many agents which continuously change 
decisions to improve their objectives and the objectives of 
the system as a whole. This approach is quite different 
from ours as it requires the definition of negotiation 
protocols and tradable resources.  

Other papers present in the literature consider variants 
of the communication scheduling problem. For example in  
(Abraham, et al., 2016) the focus in on the Multi 
Spacecraft Per Antenna (MSPA) case, in which a single 
antenna can support simultaneous communication with 
multiple spacecraft. Intuitively, MSPA can be modeled in 
our setting just by duplicating antennas and in-view 
periods. However, there are several additional constraints 
which must be imposed to ensure feasibility. We see this 
extension as a direction for future work. 

More in general, the problem that we tackle is an 
instance of scheduling with temporal constraints and there 
is a conspicuous amount of work which has been devoted 
to this topic (Bartak et al., 2014). Temporal constraints 
(Dechter et al., 1991) are defined as intervals containing 
allowed durations or interleaving times between activities. 
They have been extended in several ways: to incorporate 
different forms of preferences (Khatib et al., 2007; 
Peintner et al., 2005), to handle uncertainty on the 
occurrence time of certain events (Vidal et al., 1999), to 
model conditional information on the execution of 
activities (Tsamardinos et al., 2003; Bartak et al., 2007), 
and to handle preferences and uncertainty simultaneously 
(Rossi et al., 2006). Unfortunately, the problem we have 
does not directly fit into any of the models present in the 
literature. In fact, our setting is characterized by the 
coexistence of priorities over the activities, fairness 
requirements, and preferences which are conditioned not 
on exogenous events, such as in (Tsamardinos et al., 2003) 
but on choices made the scheduler.  It is however on our 
agenda to investigate the application some of these 
methods as a component of our solving procedure. 

Concluding Remarks 
This paper presented our preliminary work on Jigsaw, a 
scheduling system that can help missions like EM-1 with 
multiple NanoSats being deployed and competing for the 
same DSN assets. The approach we are taking involves 
two phases: (1) generating the minimum requirement 
schedule and (2) improving the schedule by optimizing the 
pass duration and start time preferences.  The first phase 
has the unique challenge of scheduling the setup activities, 
given that the correct setup duration can be determined 
only in the context of the complete schedule.  The second 
phase has the unique challenge of optimizing two 
preferences (pass duration and pass start time) which are 
not independent. 

In the last year or so, the DSN has become keenly 
aware of the challenges that NanoSats will present and is 
subsequently performing research into future capabilities 
to expand their capabilities to support multiple spacecraft 
in parallel. However, implementation of these new 
capabilities is not expected to be ready to deploy for the 
EM-1 mission. Furthermore, these capabilities are focused 
on the science phases of the missions, not the first few 
days in which DSN resource contention is highest. As a 
result, JPL/DSN has expressed support for the Jigsaw 
project and sees it as complementary with their efforts. 

Thus far, we have demonstrated the feasibility of the 
Jigsaw approach on a reduced problem including only 
three of the possible thirteen NanoSat missions. In future 
work, we intend to extend our test problem to the full set 
of missions and evaluate how well our approach scales.  

We also intend to perform an empirical comparison of 
the preference optimization techniques as well as a third 
alternative using both techniques in sequence.  
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