

Deconfliction of Spacecraft Communication Schedules with

Preference Optimization

John L. Bresina1, Matthew D’Ortenzio1, Paul H. Morris1, K. Brent Venable2,3
1NASA Ames Research Center, Moffett Field, CA, USA; 2Tulane University, New Orleans, LA, USA; 3IHMC, Pensacola, USA

John.L.Bresina@nasa.gov, matthew.dortenzio@nasa.gov, Paul.H.Morris@nasa.gov, kvenabl@tulane.edu

Abstract
In this paper, we describe Jigsaw: a suite of AI software
tools for deep-space nano-satellite (“NanoSat”)
communication scheduling. Jigsaw is intended to support
the 13 NanoSat missions set to launch on NASA’s Space
Launch System (SLS) / Orion Exploration Mission 1 (EM-
1) in 2019.

Rather than have each of these missions independently
submit requests to the Deep Space Network (DSN) process
and negotiate with all other competing missions, Jigsaw
can be used to generate a joint request that has already
eliminated conflict among the 13 missions. This can
greatly reduce the cost of scheduling and negotiating for
each mission. This is especially useful during the first week
of the EM-1 mission when all the spacecraft have critical
events and are all competing for the same DSN assets.

In order to automate this deconfliction process, the
communication pass requests from the individual missions
include both the minimal requirements and the ideal
preferences, and each pass is assigned a priority. The
constraints and preferences specified in the requests are
used to guide the generation of a joint schedule that
satisfies all constraints, maximizes the achievement of the
preferences, and is fair across the missions.

We describe the specification of the communication
requests, which contain both hard constraints and
preferences, and then we describe our current approach to
solving this scheduling problem. The approach is
exemplified on a realistic example involving three of the
EM-1 NanoSat missions.

Introduction
Missions involving small spacecraft are attracting an
increasing amount of attention by the space research
community due to the many advantages they bring to the
table. Small spacecraft provide a means of performing
scientific observations, as well as, demonstrating new
technologies, with limited risk and cost.

The first cadre of 13 interplanetary NanoSat missions,
is set to launch on NASA’s Space Launch System (SLS) /
Orion Exploration Mission 1 (EM-1) in 2019. Many of the
missions will need to rely on the powerful antennas of
NASA’s Deep Space Network (DSN) to provide
communication between their NanoSat and ground

controllers. Each of these stand-alone missions will be
faced with the prospect of a lengthy and costly
communications scheduling negotiation for their early
mission critical event coverage. This will be a process
that the missions likely haven’t allocated sufficient budget
for, yet one that they will be required to participate in,
such that some of their most critical events (e.g. trajectory
correction maneuvers) will be successful.

The DSN’s existing scheduling process and software is
highly successful at balancing the needs of 30+ missions
when those missions are distributed throughout the solar
system and when data return needs can be balanced over
long periods of time. However, their processes are not
optimized to support the situation that EM-1 will present,
where 13 NanoSats will be in the same area of the sky,
continually competing for the same assets, and where they
rely on the missions themselves to negotiate time
collaboratively. Similar negotiations on a pair of co-
manifested Moon-bound missions in 2009 took 2 months,
and only yielded about 15% contingency case coverage.
While the DSN is planning some system improvements to
support NanoSat missions, intense over-subscription
issues are likely to persist.

The Jigsaw software effort has started to address this
problem by adapting artificial intelligence scheduling and
preference optimization techniques. The goal is to allow
the DSN and its NanoSat mission customers to efficiently
and accurately construct early mission communication
schedules, when contention for ground antennas will be
highest. If successful, employing Jigsaw to help manage
early-mission EM-1 critical events will drastically reduce
the amount of time (potentially up to 100 times), and
hence funds, that it will take to create a viable early-
mission DSN schedule for the EM-1 launch.

Rather than have each of these missions independently
submit requests to the DSN process and negotiate with all
other competing missions, Jigsaw can be used to generate
a joint request that has already eliminated conflict among
the 13 missions. In order to automate this deconfliction
process, the communication pass requests from the
individual missions include both the minimal requirements

and ideal preferences, and each pass is assigned a priority.
The constraints and preferences specified in the requests
are used to guide the generation of a joint schedule that
includes as many requests as possible, does not violate any
hard constraints, maximizes the achievement of the
preferences on pass durations and start times, and is fair
across the missions in terms of resource allocation.

Our current approach involves two phases. In the first
phase, a schedule is generated that tries to satisfy the
minimal requirements specified in the requests from all
the missions. In the second phase, this minimal-
requirements schedule is improved as much as possible,
based on the ideal preferences expressed in the requests.
In both phases, the schedules respect the request priorities
and are fair across all missions. In this paper, we first
present background information on the EM-1 mission, on
the DSN’s structure, and its scheduling process. Secondly,
we describe our specification language and process for
communication requests. We then describe our two-phase
approach to solving this scheduling problem and for the
second phase, we present two alternative techniques for
optimizing the preferences. We illustrate Jigsaw’s
operation with a realistic set of requests based on three of
the EM-1 NanoSat missions.

The EM-1 Mission
In late 2019 NASA will launch its new heavy-lift rocket,
the Space Launch System (SLS), carrying the Orion crew
capsule. This being the first test flight of the SLS/Orion
beyond low earth orbit, NASA has designated the mission
“Exploration Mission 1 (EM-1)”. While the crew capsule
will be unmanned on EM-1, the rocket will be carrying
along 13 NanoSats. These NanoSats, each only about the
size of a shoe-box, are entire missions onto themselves,
and will be deployed from the upper stage of the SLS at
various points along the rocket’s trajectory between the
Earth and the Moon (see Figure 1).

These 13 missions, some NASA sponsored, others
Industry or International sponsored, are groundbreaking.
While academia and the aerospace industry have been

developing and deploying NanoSats of increasing
capability over the last decade, these missions represent
the first cadre of interplanetary NanoSat missions, tasked
with exploring regimes outside of the Low Earth Orbit
(LEO). The Moon, an asteroid and interplanetary radiation
are some of the research targets for these missions.

Of course, with any new paradigm, comes a new set of
challenges. In the case of the EM-1 NanoSats, scheduling
of ground-based antenna dishes and communications
equipment, is one of them. The only dishes large enough
to support talking with these tiny spacecraft (with
correspondingly tiny radios) are contained within NASA’s
Deep Space Network (DSN). The DSN is already one of
NASA’s communications workhorses supporting all of
NASA’s deep space missions including New Horizons,
the Mars Rovers, and Kepler. Successfully integrating up
to 13 new missions for the DSN to support in the matter of
a day, presents a unique resource scheduling challenge.

Deep Space Network Scheduling
The DSN comprises a collection of large diameter antenna
dishes or “stations”, and radio frequency processing
equipment at three geometrically distributed locations or
“complexes”. The DSN complexes, in Goldstone, CA
(USA), Madrid (Spain) and Canberra (Australia) are
located approximately 120 degrees of longitude apart,
such that nearly any deep space location (e.g. Mars, Pluto)
is above the local horizon, and hence can be “viewed” by
an antenna of at least one of the complexes at any time of
the day. Each complex has between three and five 34-m
diameter antenna dishes, as well as a single 70-m dish.
 Each of the stations can support a variety of “services”
according to the needs of the mission it is supporting; the
most common services include:

• Telemetry Downlink (data communication from
the spacecraft to the ground antenna),

• Command Uplink (data communication from the
ground antenna to the spacecraft),

• Doppler tracking (measurement of frequency
shifts in the downlink signal, from which relative
velocity between the spacecraft and the ground
antenna can be derived), and

• Range tracking (time of flight measurement of a
signal sent up by the ground antenna, received
and retransmitted by the spacecraft, from which
distance between the spacecraft and the ground
antenna can be derived).

Each DSN mission customer is unique with respect to
which combinations of services are required, and with
respect to when and for how long the services are
required, with those needs usually being dependent on the
phase of the mission. For example a mission attempting to
enter the orbit of another planet, might require Doppler
and range tracking several hours before the time of the
planetary encounter, then uplink, downlink and tracking

Figure 1: EM-1 Mission.

through the time of orbit capture and for an hour
afterwards. Later in the mission however, the requirement
might relax to just two hours of concurrent uplink and
downlink time per week, such that all of the data collected
on-board during that week can be transmitted to the
ground. Frequently, antenna size and/or capability are also
factors in how a mission uses the network (e.g. spacecraft
at or beyond the outer planets require use of the 70-m
station due to its higher receive and transmit gain).
 Production of a network-wide conflict-free schedule is
the responsibility of the entire DSN mission set. That is,
the scheduling of assets is community-driven rather than
priority driven. While the established processes by which
the community arrives at the network schedule are well
outside the scope of this paper, some key terminology and
concepts are useful to understanding the Jigsaw context. In
the end, DSN stations are allocated to missions for blocks
of time, referred to as “tracks”. Each track is created with
a combination of the services described above. The
minimum track time is usually on the order of 30 minutes,
maximum track lengths are sometimes as long as 10 or 11
hours, corresponding to horizon-to-horizon tracking of the
spacecraft by a station (think of the Moon “rising”, then
“setting” about 10 hours later).
 In addition to tracking time, the schedule also includes
time between tracks on individual stations for the station
operators to transition from supporting one mission to
supporting another. A variable-length “set up” is always
scheduled prior to the start of the track, and a 15-minute
“tear down” scheduled after the end. The duration of the
“set-up” is dependent on which services are selected for
the given track; minimum of 30 minutes, maximum of 75
minutes.

Jigsaw Approach
In this section, we first describe how the mission teams
specify the communication requests and how they express
their preferences regarding the durations and start times of
the requested passes. Secondly, we describe the first
phase of our approach, which involves generating a
schedule that attempts to satisfy the minimum
requirements implied by the set of requests. The second
phase involves optimizing this minimum requirement
schedule in terms of the preferences. We present two
different approaches to this preference optimization
process; the first alternative only tries to optimize the
duration preference, and the second alternative attempts to
optimize both duration and start time preferences. These
approaches are illustrated on an example problem based
on the BioSentinel mission, the Lunar Flashlight mission,
and the Near-Earth Asteroid (NEA) Scout mission.

Communication requests with preferences
We use the Open Source Scheduling and Planning
InterFace for exploration (OpenSPIFe) (for details see
https://github.com/nasa/OpenSPIFe/wiki), an open source
software managed by NASA Ames Research Center, to
create communication pass requests, which are
represented as activities in a timeline. The important
events of each NanoSat mission and the EM-1 mission are
also represented on timelines to give context. In addition,
the SPIFe resource displays show the following state
resources to help the mission teams place their requests:

• For each DSN station (antenna), when has the
station been allocated for use by the NanoSat
missions; determined by the DSN.

• For each DSN complex and NanoSat mission
pair, when is the complex in view of the NanoSat
for uplink communication; determined by the
predicted mission trajectory.

• For each DSN complex and NanoSat mission
pair, when is the complex in view of the NanoSat
for downlink communication; determined by the
predicted mission trajectory.

The Activity Dictionary includes an activity type to
represent each mission’s pass requests (e.g.,
BIOS_PASS_REQUEST for requests from the
BioSentinel mission), and each of these request activity
types include the following parameters:

• Ideal and Minimum pass duration
• Pass Type (Uplink-Downlink with/without

ranging, or Downlink only)
• Antenna Type (Band Wave Guide (BWG), High

Efficiency (HEF), Any)
• DSN Complex (Canberra, Goldstone, Madrid,

Any)
• Event reference or date reference
• Largest, ideal, and smallest factor before
• DSN criticality
• Mission priority
• Whether to add a backup pass
• Backup tolerance factor.

The earliest, the ideal, and the latest that the requested
pass can start are computed as offsets from the reference
date. The date reference is an absolute date; thus, it
specifies the reference date explicitly. The event reference
specifies one of the mission’s critical events (e.g.,
deployment from EM-1); the derived reference date, in
this case, is the start time of the specified event. More
specifically, the offsets from the reference date are
computed as the product of the pass duration and the
appropriate “factor before” parameter: earliest start time
uses the largest factor before, ideal start time uses the ideal
factor before, and the latest start time uses the smallest
start time before.

The offset is subtracted from the reference date (either
the absolute date or an event’s start time). Note that these
three factors can be positive or negative; if positive, the

computed start time constraint (earliest and latest) or
preference (ideal) is before the reference date, and if
negative, they will be after the reference date.

As an example, suppose the reference date is noon on a
particular date, and the request parameters are as follows:

• Largest factor before = 1.0
• Ideal factor before = 0.50
• Smallest factor before = -0.20
• Minimum pass duration = 1 hour
• Ideal pass duration = 2 hours

If we consider the minimum pass duration, then the pass is
constrained to start within the interval [11:00, 12:12], with
an ideal start time of 11:30. Likewise, if we consider the
ideal duration, then the pass is constrained to start within
[10:00, 12:24], with an ideal start time of 11:00.

The backup tolerance factor determines how far the
backup pass can be shifted (right or left) from the
associated primary pass. The start time offset and end
time offset is computed as the product of tolerance factor
and the pass duration.

Note that in this problem domain, the start time
preference and the pass duration preference are not
independent, and this dependence between preferences is a
unique challenge in the work that’s been done on planning
and scheduling with preferences.

Example problem
The example problem that we have been using to
demonstrate feasibility of our approach uses representative
schedule requests from three of the EM-1 NanoSat
missions: BioSentinel (a deep-space radiation biology
experiment), Lunar Flashlight (a lunar science mission),
and NEA Scout (a near-Earth asteroid mission). Figure 2
shows the full set of requests from these missions, in the
context of their key mission events (e.g. trajectory
correction maneuvers) and overall EM-1 mission events
(e.g. launch time). The requests were based on preliminary
mission operations plans for each mission. For example
BioSentinel doesn’t have any propulsive maneuvers, so its
request is for three short passes per day for state of health
checking. On the other hand NEAScout and Lunar
Flashlight do have maneuvers, so their requests are more
substantive, with longer passes both before and after the
maneuvers to gather tracking data.
 Figure 2 shows all of the requests in the Example
Problem, with each mission on its own row in the
timeline. The pass duration and start times shown are the
ideal values, but preference information for each pass,

which includes a minimum duration and earliest or latest
start time were also captured.

As an example of preference specifications, we consider
a request for the NEA Scout mission, whose purpose is to
observe a maneuver. In this case, the minimum and ideal
durations are 2.5 and 4 hours, and the largest, ideal, and
smallest factors are 0.7, 0.5, and 0.2. This means,
assuming a duration of 3 hours, that ideally the event will
occur in the middle of the pass and the pass will not be
scheduled to start earlier than 126 minutes before the
event and no later than 30 minutes before the event.

 There is a total of thirty-seven requests in the Example:
fourteen from BioSentinel, twelve from Lunar Flashlight,
and eleven from NEA Scout, plus 3 backups.

Generating minimum requirement schedules
The first phase of our current approach involves
generating a schedule that attempts to satisfy the minimum
requirements of all the missions’ requests. The pass
durations used are the minimum durations specified in the
requests. No attempt is made to schedule a pass close to its
ideal start time; in fact, the passes are scheduled as early
as possible, in order to avoid leaving gaps in the schedule.
Any backup passes are considered only after all primary
passes have been attempted to be scheduled.

The scheduler uses a random sampling approach, where
on each sample, a schedule is incrementally constructed
via a sequence of random choices, and then it is checked
for validity. If the schedule is invalid, it is discarded, if it
is valid, it is compared to the current best schedule to
determine whether it became the new best schedule.
During the incremental construction, the sequence of
choices are as follows:

1. Randomly choose a requested pass to schedule.
2. Randomly choose a possible station on which to

schedule the pass.
3. Randomly choose a possible schedule window to

insert the pass.
4. Randomly choose a predicted DSN setup

duration to use (unless one already exists in the
schedule).

In Step 2, the set of possible stations that can service a
request is restricted by the request’s antenna type and
complex parameters. It is also restricted by what stations
have been allocated by the DSN for the EM-1 missions
and by the in-view windows (uplink and down view
periods, depending on the request pass type parameter).
Lastly, it is restricted based on the current schedule for

Figure 2: Pass requests and mission events in SPIFe.

each station; that is, there has to be an open slot in the
station schedule big enough to fit the minimal-duration
pass. There could be more than one open slot in a station
schedule that can accommodate the pass. In Step 3, one of
these open slots is randomly chosen and the pass is
scheduled at the earliest time in that slot.

If there already is a setup activity scheduled for a prior
pass of the same mission and the gap between the two
passes is not larger than one hour, then no additional setup
is inserted. Otherwise, a setup activity is scheduled before
the pass and the setup duration is randomly chosen
between the duration required by the pass and the
maximum setup duration of one hour (Step 4). We insert a
potentially longer duration setup than is currently required
because, later in the scheduling process, another pass from
the same mission may be scheduled after the current pass,
serviced by the same setup, and this new pass may require
a longer setup time than the current pass does. The actual
setup durations can only be determined in the context of
the complete schedule; this poses a unique challenge to
constructing the schedule in an incremental fashion.

A schedule is valid if the predicted setup durations are
at least as large as the actual setups needed. The
schedule’s evaluation is based primarily on the priorities
of the requests that did not fit into the schedule and
secondarily on the fairness across the different missions
with respect to the percentage of requests unscheduled.
The lower the score, the better the schedule quality.

For each primary pass not in the schedule, the priority
score is incremented by the exponential of 10 raised to the
(1 – pass priority). Thus, the more important the pass (i.e.,
the lower the priority integer), the larger the penalty for
not scheduling the pass. For the priority factor of the
score, the backup passes that are missed are treated as if
they have a priority two more (i.e., less important) than the
associated prime pass does.

The fairness across prime passes and across backup
passes is computed separately. The fairness scores are
based on the differences, across the missions, of the
proportion of requests that are not scheduled. The ideal
fairness has a difference metric of zero.

The factors are weighted and summed as follows:
(10000 * priority score) + (100 * prime fairness score) +
backup fairness score. The number of setup activities is
used as a tie breaker, where the schedule with fewest
setups is preferred.

We will now describe two options for phase two of the
Jigsaw approach which attempt to improve the quality of
the minimum requirement schedule by optimizing the
preferences.

Optimizing pass duration via binary search
This approach to optimization combines the (previously
described) random sampling scheduler together with
binary search to try to uniformly optimize the durations

towards the ideal. It does not attempt to optimize the start
times. It uses the following steps:

1. Input the minimum requirement schedule and
remove from the set of requests any primary or
backup passes that did not get scheduled.

2. With only the remaining accepted requests,
reformulate the input using durations that are
intermediate between minimal and ideal. These are
chosen to support a search for improved durations
that still satisfy the accepted requests.

The search algorithm iterates over the priority values p
from highest to lowest and uses the following scheme to
set the request durations in each iteration.

(a) Use the already computed best duration for
requests of higher priority than p.

(b) Use the minimum duration for requests of lower
priority than p.

(c) Do a binary search for the uniformly best duration
of requests whose priority is p.

The binary search for the uniformly best duration is
interpreted as seeking the highest alpha between 0 and 1
such that all the accepted requests can be scheduled with
the pass durations set to (1 - alpha) * minimum duration +
alpha * ideal duration.
 Note, that the optimization is lexicographic with respect
to priorities. Thus, it treats durations of higher priority
requests as being infinitely more important than those of
lower priority requests. An egalitarian alternative could
seek the uniform best for all the requests, then seek further
improvements for successively higher priorities. This
would result in alpha values that vary monotonically with
the priorities, but it is unclear whether it would better suit
mission needs.

Optimizing pass duration and start time
The second optimization technique, which we denote as
Stretch-and-Shift, takes as input the minimum requirement
schedule (described previously). It then performs the
following steps:

1. The minimum requirement schedule is scanned for
all opportunities of increasing the duration of
passes. All passes that can be stretched are binned
into groups corresponding to missions and are
sorted in decreasing order of mission priority.
Whenever possible, tie breaks are applied using the
DSN criticality.

2. Passes are extracted from the bins in a round-robin
fashion until all bins are empty. For each extracted
pass, its duration is stretched to the minimum
between its ideal duration and the available time.
The minimum increase in duration is set to 5
minutes and stretching is applied bilaterally until
either one side gets saturated or the ideal duration is
reached. If one side is filled, and the ideal duration
is not reached, then, the stretching continues on the
other side. Once the duration is optimized the

preference over the start time is computed as
described in Section “Communication Requests
with Preferences”. The pass is then rigidly shifted in
order to bring the start-time as close as possible to
its ideal time-point, given the duration.

We note that this approach is based on the assumption that
increasing the duration of a pass is more important that
optimizing the start time. Moreover, fairness in the
optimization process is ensured by the round-robin
strategy applied to select candidate passes. Finally,
priorities are respected by giving passes with a high value
precedence in terms of optimization.

Results on example problem
We now describe the results obtained by the optimization
approaches on the example problem which we have
described earlier.
Both solvers were given in input the same minimum
requirement solution, which scheduled 34 out of 40
requests (where 3 of the unassigned requests were
backups) assigning minimum durations and earliest
feasible start times to the activities.

 Priority 1 Priority 2 Priority 3 Priority 4

Binary Search 100% 0% 75% 100%
Bin. Search

Egal.

75% 25% 25% 25%

Stretch-and-

Shift -Duration

99% 56% 80% 77%

Stretch-and-

Shift - Start

76% 58% 38% 72%

Table 1: Increase in duration and start time obtained by
three optimization methods. Averaged by priority groups.

The first three rows of Tables 1 and 2 show the
improvements obtained, with respect to the minimum
requirement solution, in terms of duration for standard and
egalitarian binary search and for the stretch-and-shift
approach. The last row of both tables shows the
improvement in terms of start time for the stretch-and-
shift approach. All improvements are expressed as
percentages. In particular, the first three rows of Table 1
and Table 2 show the percentage of increase in duration
achieved by the three methods with respect to obtaining
the ideal duration. The last row of the tables show how
much closer, in percentage, the shifting procedure was
able to move the start time of the activities to their ideal
values. All percentages are averaged, in Table 1 by
priority and in Table 2 by mission.
We note that the quality of the solution found by the
binary search approach to optimization is affected by two
preset parameters: the number of random trials used by the
underlying solver; and the resolution of the alpha values
in the binary search. The results shown here were
obtained with 15,000 trials and 1/8 resolution.

Note the improvement to the ideal duration for the highest
priority requests in the case of binary search had the effect
of limiting the second-highest to their minimum durations.
The alternative, more egalitarian, method described in the
binary search section achieved lower overall
improvements with the same preset parameters but with a
fairer distribution across missions.

 NEAS LFLI BIOS

Binary Search 66% 69% 80%
Bin.-Search

Egal.
39% 33% 29%

Stretch-and-

Shift -Duration
67% 81% 90%

Stretch-and-

Shift - Start
47% 49% 83%

Table 2: Increase in duration and start time obtained by
three optimization procedures. Averaged by mission.

In the case of the Stretch-and-Shift algorithm we also
tested the impact of changing the order of the missions in
the round-robin. In this example such order turned out to
be irrelevant.

We remark that the results we report only pertain to the
execution of our method on an example which was
designed as a realistic representation involving three
missions. Our near future agenda, as discussed later,
includes testing the methods on more realistic examples
including all 13 missions and on synthetic instances
appropriately generated to resemble scenarios relevant to
the EM-1 mission.

Related Research
Optimization in the context of communication scheduling
has recently been investigated, mainly in response to the
current DSN oversubscription problem. The work
described in (Pinover et al., 2017), references the same
mission as a Jigsaw, and shows the infeasibility of an
approach which tries to relegate time slots for small
satellites to residual gaps left open by the other 35
missions currently handled by the DSN (opportunistic gap
filling). The authors propose block scheduling, which is an
approach based on collapsing several small satellites
flying in sufficiently tight formation into a single entity in
terms of communication scheduling. This has many
benefits, among which is the simplification of the final
deconfliction phases, which are still tasked to humans, and
the optimization in terms of the number of setup and
teardown times. This approach is indeed complementary
to ours. On one side, it does not address the incorporation
of mission manager’s preferences in terms of duration and
start times and it does not provide any guarantee in terms
of fairness among missions. On the other side, it optimizes

with respect to complex global DSN constraints which we
treat as strict a priori requirements.
 Another particularly interesting paper (Augenstein, et
al., 2016) addresses the topic of scheduling constellations
of Earth-orbiting satellites using a mixed-integer linear
programming (MILP) approach. While the context and
constraints are different, and the nonlinear preference
dependency aspect of Jigsaw does not lend itself to an
MILP formulation, the paper introduces several intriguing
ideas, including compiling complex requirements into
simpler mutual exclusion constraints. Unfortunately, this
technique seems not to be applicable in our case because
of global interactions involving the setup and teardown
needs of the different requests.
In (Skobelev, et al., 2014) the authors tackle a similar
problem to the one considered here, with a multi-agent
technique where a schedule emerges from the interaction
and trade-offs of many agents which continuously change
decisions to improve their objectives and the objectives of
the system as a whole. This approach is quite different
from ours as it requires the definition of negotiation
protocols and tradable resources.

Other papers present in the literature consider variants
of the communication scheduling problem. For example in
(Abraham, et al., 2016) the focus in on the Multi
Spacecraft Per Antenna (MSPA) case, in which a single
antenna can support simultaneous communication with
multiple spacecraft. Intuitively, MSPA can be modeled in
our setting just by duplicating antennas and in-view
periods. However, there are several additional constraints
which must be imposed to ensure feasibility. We see this
extension as a direction for future work.

More in general, the problem that we tackle is an
instance of scheduling with temporal constraints and there
is a conspicuous amount of work which has been devoted
to this topic (Bartak et al., 2014). Temporal constraints
(Dechter et al., 1991) are defined as intervals containing
allowed durations or interleaving times between activities.
They have been extended in several ways: to incorporate
different forms of preferences (Khatib et al., 2007;
Peintner et al., 2005), to handle uncertainty on the
occurrence time of certain events (Vidal et al., 1999), to
model conditional information on the execution of
activities (Tsamardinos et al., 2003; Bartak et al., 2007),
and to handle preferences and uncertainty simultaneously
(Rossi et al., 2006). Unfortunately, the problem we have
does not directly fit into any of the models present in the
literature. In fact, our setting is characterized by the
coexistence of priorities over the activities, fairness
requirements, and preferences which are conditioned not
on exogenous events, such as in (Tsamardinos et al., 2003)
but on choices made the scheduler. It is however on our
agenda to investigate the application some of these
methods as a component of our solving procedure.

Concluding Remarks
This paper presented our preliminary work on Jigsaw, a
scheduling system that can help missions like EM-1 with
multiple NanoSats being deployed and competing for the
same DSN assets. The approach we are taking involves
two phases: (1) generating the minimum requirement
schedule and (2) improving the schedule by optimizing the
pass duration and start time preferences. The first phase
has the unique challenge of scheduling the setup activities,
given that the correct setup duration can be determined
only in the context of the complete schedule. The second
phase has the unique challenge of optimizing two
preferences (pass duration and pass start time) which are
not independent.

In the last year or so, the DSN has become keenly
aware of the challenges that NanoSats will present and is
subsequently performing research into future capabilities
to expand their capabilities to support multiple spacecraft
in parallel. However, implementation of these new
capabilities is not expected to be ready to deploy for the
EM-1 mission. Furthermore, these capabilities are focused
on the science phases of the missions, not the first few
days in which DSN resource contention is highest. As a
result, JPL/DSN has expressed support for the Jigsaw
project and sees it as complementary with their efforts.

Thus far, we have demonstrated the feasibility of the
Jigsaw approach on a reduced problem including only
three of the possible thirteen NanoSat missions. In future
work, we intend to extend our test problem to the full set
of missions and evaluate how well our approach scales.

We also intend to perform an empirical comparison of
the preference optimization techniques as well as a third
alternative using both techniques in sequence.

Acknowledgements
We would like to acknowledge Charlie Livaudais and
Ethan Bogart, two exceptional undergraduate students, for
their contributions to the implementation of the Stretch-
and-Shift algorithm, as well as our former collaborators
for their foundational work; in particular Alfredo
Bencomo for his work to adapt OpenSPIFe for this
application, and Ken Galal for his work in modeling EM-1
and NanoSat mission trajectories, and informing our work
with his extensive spaceflight mission expertise.

We would also like to acknowledge our sponsors: the
Autonomous Mission Operations program led by Dr.
Jeremy Frank; and the NASA Ames - Center Innovation
Fund (CIF), led by Center Chief Technologist, Harry
Partridge, who provided the original funding to get the
project off the ground in 2016.

References
Abraham, D., MacNeal, B., Heckman, D. 2016. Enabling
Affordable Communications for the Burgeoning Deep
SpaceCubeSat Fleet. In Proceedings of SpaceOps 2016.
Augenstein, S., Estanisiao, A., Guere, E., and Blaes, S., 2016.
Optimal Scheduling of a Constellation of Earth-Imaging
Satellites, for Maximal Data Throughput and Efficient Human
Management. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS 2016).
Bartak, R., Morris, R.A., Venable, K.B. 2014. An introduction to
constraint-based temporal reasoning. Morgan & Claypool
Publishers.
Barták, R., Cepek, O. 2007. Temporal Networks with
Alternatives: Complexity and Model. FLAIRS Conference 2007:
Pages :641-646.
Dechter, R. Itay Meiri, I., Judea Pearl, J. 1991. Temporal
Constraint Networks. Artif. Intell. 49(1-3): 61-95.
Khatib, L., Morris, P.H., Morris, R.A., Rossi, F., Sperduti, A.,
Venable, K.B. 2007. Solving and learning a tractable class of
soft temporal constraints: Theoretical and experimental results.
AI Commun. 20(3): 181-209.
Peintner, P., Pollack, M.E. 2005. Anytime, Complete Algorithm
for Finding Utilitarian Optimal Solutions to STPPs. AAAI 2005:
443-448.
Pinover, K., Johnston, M.D., Lee, C. 2017. Optimizing SmallSat
Scheduling for NASA’s Deep Space Network. In Proceedings of
the 10th International Workshop on Planning and Scheduling for
Space (IWPSS 2017).
Rossi, F., Venable, K.B., Yorke-Smith, N. 2006. Uncertainty in
Soft Temporal Constraint Problems: A General Framework and
Controllability Algorithms for The Fuzzy Case. J. Artif. Intell.
Res. 27: 617-674.
Skobelev, P., Simonova, E., Ivanov, A., Mayorov, I., Travin, V.,
and Zhilyaev, A. 2014. Real Time Scheduling of Data
Transmission Sessions in a Microsatellites Swarm and Ground
Stations Network Based on Multi-Agent Technology. In
Proceeding Proceedings of the International Joint Conference
on Computational Intelligence (IJCCI2014) - Volume 1 Pages
153-159, SCITEPRESS.
Tsamardinos, I., Vidal, T., Pollack, M.E. 2003. CTP: A New
Constraint Based Formalism for Conditional, Temporal
Planning. Constraints 8(4): 365-388.
Vidal, T., Fargier, H. 1999. Handling contingency in temporal
constraint networks: from consistency to controllabilities. J.
Exp. Theor. Artif. Intell. 11(1): 23-45.

