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Abstract

In many scenarios including multi-agent systems and recom-
mender systems, user preference play a key role in driving the
decisions the system makes. Thus it is important to have pref-
erence modeling frameworks that allow for expressive and
compact representations, effective elicitation techniques, and
efficient reasoning and aggregation. CP-nets offer convenient
tradeoffs among all these desiderata. It is often useful to be
able to measure the distance between the preferences of two
individuals; between a group and an individual; between the
preferences of the same individual at different times; or be-
tween subjective preferences and exogenous priorities, e.g.,
ethical principles, feasibility constraints, or business values.
To this end we define a notion of distance between CP-nets
that is tractable to compute and has useful theoretical and ex-
perimental properties when compared to the Kendall-tau dis-
tance between the partial orders generated by the CP-nets.

Introduction
Preferences are ubiquitous in real-life, and are central to de-
cision making, whether the decision is made by a single in-
dividual or by a group. The study of preferences in com-
puter science has been central to AI for a number of years
with important theoretical and practical results (Domshlak
et al. 2011; Pigozzi, Tsoukiàs, and Viappiani 2015). CP-
nets provide an effective compact way to qualitatively model
preferences over outcomes with a combinatorial structure
(Boutilier et al. 2004). CP-nets are also easy to elicit and
provide efficient optimisation reasoning. Moreover, CP-nets
provide a way to model not only subjective preferences, but
also priorities and optimisation criteria, thus allowing for a
homogeneous modelling and reasoning framework where a
seamless integration of several optimisation and preference
reasoning modalities are supported.

Besides modelling, learning, reasoning with, and aggre-
gating preferences, often it is useful to be able to measure
the distance between the preferences of two individuals, or
between a group and an individual, in order to measure the
amount of disagreement and possibly get closer to a con-
sensus. A notion of distance can also be useful in the pres-
ence of exogenous priorities, besides subjective preferences.
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Such priorities can be derived from ethical principles, fea-
sibility constraints, or business values. Being able to mea-
sure the distance between preferences and external priorities
provides a way to alert about deviations from feasibility or
ethical constraints, and possibly suggest more compliant de-
cisions.

In this paper we define a notion of distance (formally a
distance function or metric) between CP-nets. CP-nets are a
compact representation of a partial order over outcomes, so
the ideal notion of distance would be a distance between the
underlying partial orders of the CP-net. However, the size of
the induced orders is exponential to the size of the CP-net,
and we conjecture that computing a distance between such
partial order is computationally intractable because of this
possibly exponential expansion.

As a baseline for comparison we generalize the classic
Kendall’s τ (KT) distance (Kendall 1938), which counts the
number of inverted pairs between two complete, strict lin-
ear orders. We add a penalty parameter p defined for partial
rankings as in (Fagin et al. 2006), and use this distance we
call KTD to compare partial orders. In this measure the con-
tribution of pairs of outcomes that are ordered in opposite
ways is 1 and that of those that are ordered in one partial
order and incomparable in the other one is p. We show that
we must have 0.5 ≤ p < 1 to be a distance.

To achieve tractability, we define a normalised distance
between CP-nets, called CPD, that does not look at the par-
tial orders but rather analyses the dependency structure of
the CP-nets and their CP-tables in order to compute the dis-
tance. This notion of distance is an approximation of the
KTD distance between partial orders. However, when KTD
is 0 then CPD is also 0. This happens when the two CP-
nets have the same dependency structure and CP-tables. The
pairs of outcomes for which CPD could give an incorrect
contribution to the distance are those that are either incom-
parable in both CP-nets, in this case CPD could generate an
error of +p or −p, or that are incomparable in a CP-net and
ordered in the other, in this case the CPD error can be +1.

In order to give upper and lower bounds to the error that
CPD can make, we study the incomparabilities present in a
CP-net, proving that it is polynomial to compute the num-
ber of incomparable pairs of outcomes in a separable CP-
net. Non-separable CP-nets have fewer incomparable pairs
of outcomes, since each dependency link eliminates at least



one incomparable pair. However, these theoretical bounds
are very loose. For this reason, we also perform an experi-
mental analysis of the relationship between CPD and KTD,
which shows that the average error is never more than 10%.

Contribution. We define a distance function between CP-
nets that generalizes the Kendall τ distance between the un-
derlying partial orders. We conjecture that this distance is
hard to compute and define an approximation of this dis-
tance which can be computed in polynomial time. We pro-
vide bounds on this approximation based on the number of
incomparable pairs in a CP-net and perform empirical ex-
periments to show that our approximation is never more than
10% away from the true distance.

Background: CP-nets
CP-nets (Boutilier et al. 2004) (for Conditional Prefer-
ence networks) are a graphical model for compactly rep-
resenting conditional and qualitative preference relations.
They are sets of ceteris paribus preference statements (cp-
statements). For instance, the cp-statement “I prefer red
wine to white wine if meat is served.” asserts that, given
two meals that differ only in the kind of wine served and
both containing meat, the meal with red wine is prefer-
able to the meal with white wine. Formally, a CP-net has
a set of features F = {x1, . . . , xn} with finite domains
D(x1), . . . ,D(xn). For each feature xi, we are given a set
of parent features Pa(xi) that can affect the preferences
over the values of xi. This defines a dependency graph
in which each node xi has Pa(xi) as its immediate pre-
decessors. An acyclic CP-net is one in which the depen-
dency graph is acyclic. Given this structural information,
one needs to specify the preference over the values of each
variable x for each complete assignment on Pa(x). This
preference is assumed to take the form of a total or par-
tial order over D(x). A cp-statement has the general form
x1 = v1, . . . , xn = vn : x = a1 � . . . � x = am, where
Pa(x) = {x1, . . . , xn}, D(x) = {a1, . . . , am} , and � is
a total order over such a domain. The set of cp-statements
regarding a certain variable X is called the cp-table for X .

Consider a CP-net whose features are A, B, C, and D,
with binary domains containing f and f if F is the name of
the feature, and with the cp-statements as follows: a � a,
b � b, (a ∧ b) : c � c, (a ∧ b) : c � c, (a ∧ b) : c � c,
(a ∧ b) : c � c, c : d � d, c : d � d. Here, statement
a � a represents the unconditional preference for A = a
over A = a, while statement c : d � d states that D = d is
preferred to D = d, given that C = c.

A worsening flip is a change in the value of a variable to
a less preferred value according to the cp-statement for that
variable. For example, in the CP-net above, passing from
abcd to abcd is a worsening flip since c is better than c given
a and b. One outcome α is better than another outcome β
(written α � β) if and only if there is a chain of worsening
flips from α to β. This definition induces a preorder over the
outcomes, which is a partial order if the CP-net is acyclic.

Finding the optimal outcome of a CP-net is NP-
hard (Boutilier et al. 2004). However, in acyclic CP-nets,
there is only one optimal outcome and this can be found in

linear time by sweeping through the CP-net, assigning the
most preferred values in the cp-tables. For instance, in the
CP-net above, we would choose A = a and B = b, then
C = c, and thenD = d. In the general case, the optimal out-
comes coincide with the solutions of a set of constraints ob-
tained replacing each cp-statement with a constraint (Braf-
man and Dimopoulos 2004): from the cp-statement x1 =
v1, . . . , xn = vn : x = a1 � . . . � x = am we get the
constraint v1, . . . , vn ⇒ a1. For example, the following cp-
statement (of the example above) (a ∧ b) : c � c would be
replaced by the constraint (a ∧ b)⇒ c.

In this paper we want to compare CP-nets while lever-
aging the compactness of the representation. To do this, we
consider profile (P,O), where P is a collection of n CP-
nets (whose graph is a directed acyclic graph (DAG)) over
m common variables with binary domains and O is a to-
tal order over these variables. We require that the profile is
O-legal (Lang and Xia 2009), which means that in each CP-
net, each variable is independent to all the others following
in the orderingO. Given a variableXi the function flw(Xi)
returns the number of variables following Xi in the ordering
O.

Since every acyclic CP-net is satisfiable (Boutilier et al.
2004), we could compute a distance among two CP-nets by
comparing a linearization of the partial orders induced by
the two CP-nets. In this paper, we consider the linearization
generated using the algorithm described in the proof of The-
orem 1 of (Boutilier et al. 2004). This algorithm works as
follows: Given an acyclic CP-net A over n variables and a
ordering O to which the A is O-legal, then we know there is
at least one variable with no parents. If more than one vari-
able has no parents, then choose the one that comes first in
the ordering O; let X be such a variable. Let x1 � x2 be
the ordering over Dom(X) dictated by the cp-table of X .
For each xi ∈ Dom(X), construct a CP-net, Ni, with the
n− 1 variables V −X by removing X from the initial CP-
net, and for each variable Y that is a child of X , revising its
CPT by restricting each row to X = xi. We can construct
a preference ordering �i for each of the reduced CP-nets
Ni. For each Ni recursively identify the variable Xi with no
parents and construct a CP-net for each value in Dom(Xi)
following the same algorithm until a CP-net have variables.
We can now construct a preference ordering for the original
network A by ranking every outcome with X = xi as pre-
ferred to any outcome with X = xj if xi � xj in CPT(X).
This linearization, which we denote with LexO(A), assures
that ordered pairs in the induced partial order are ordered
the same in the linearization and that incomparable pairs are
linearized using the cp-tables.

A CP-net Distance Function
In what follows we will assume that all CP-nets are acyclic
and in minimal (non-degenerate) form, i.e., all arcs in the
dependency graph have a real dependency expressed in the
cp-statements, see the extended discussion in (Allen et al.
2016; 2017).

The following definition is an extension of the Kendall’s
τ (KT) distance (Kendall 1938) with a penalty parameter p
defined for partial rankings in (Fagin et al. 2006).



Definition 1. Given two CP-nets A and B inducing partial
orders P and Q over the same set of outcomes U :

KTD(A,B) = KT (P,Q) =
∑

∀i,j∈U,i 6=j

Kp
i,j(P,Q) (1)

where i and j are two outcomes with i 6= j, we have:

1. Kp
i,j(P,Q) = 0 if i, j are ordered in the same way or they

are incomparable in both P and Q;
2. Kp

i,j(P,Q) = 1 if i, j are ordered inversely in P and Q;

3. Kp
i,j(P,Q) = p, 0.5 ≤ p < 1 if i, j are ordered in P

(resp. Q) and incomparable in Q (resp. P ).

In the previous definition we choose p ≥ 0.5 to make
KTD(A,B) a distance function, indeed if p < 0.5 the dis-
tance does not satisfy the triangle inequality. We also ex-
clude p = 1 so that there is a penalty for two outcomes being
considered incomparable in one and ordered in another CP-
net. This allows us, assuming O-legality, to define for each
CP-net a unique most distant CP-net.
Proposition 1. Given two acyclic CP-nets A and B that
are not O-legal, deciding if KTD(A,B) = 0 cannot be
computed in polynomial time unless P = NP .

The NP-complete problem of checking for equivalence
for two arbitrary CP-nets (Santhanam, Basu, and Honavar
2013), i.e., deciding if two CP-nets induce the same order-
ing, can be reduced to the problem of checking if their KTD
distance is 0. That is, if we had a polynomial time algorithm
for deciding if KTD(A,B) = 0 then we could decide the
equivalence problem for acyclic CP-nets. Hence, it seems
reasonable to conjecture that the same result holds also for
O-legal CP-nets.

Due to this likely intractability we will define another dis-
tance for CP-nets which can be computed efficiently directly
from the CP-nets without having to explicitly compute the
induced partial orders. This new distance is defined as the
Kendal Tau distance of the two LexO linearizations of the
partial orders (see Section ).
Definition 2. Given two O-legal CP-nets A and B, with m
features, we define:

CPD(A,B) = KT (LexO(A), LexO(B)) (2)
We show that CPD is a distance over O-legal CP-nets.

Theorem 1. Function CPD(A,B) satisfies the following
properties:

1. CPD(A,B) ≥ 0;
2. CPD(A,B) = CPD(B,A);
3. CPD(A,B) ≤ CPD(A,C) + CPD(C,B).
4. CPD(A,B) = 0 if and only if A = B;

Proof. Properties 1-3 are directly derived from the fact that
KTD is a distance function over total orders. Let us now fo-
cus on property 4. In our context, A = B if and only if they
induce the same partial order. It is, thus, obvious that if A =
B then CPD(A,B) = 0 since LexO(A) = LexO(B).
Let us now assume that A 6= B. Thus A and B induce dif-
ferent partial orders. In principle, what could happen is that

one partial order is a subset of the other. In such a case they
would have the same LexO linearizations and it would be
the case that CPD(A,B) = 0, despite them being differ-
ent. We need to show that this cannot be the case if A and B
are O-legal. Let us first assume that A and B have the same
dependency graph but that they differ in at least one ordering
in one CP-table. It is easy to see that in such a case there is
at least one pair of outcomes that are ordered in the opposite
way in the two induced partial orders. Assume that A and
B have a different dependency graph. Due to O-legality it
must be that there is a least an edge which is present, say,
in A and missing B. In this case by adding a non-redundant
dependency we are reversing the order of at least two out-
comes.

We will now show how CPD(A,B) can be directly com-
puted from CP-netsA andB, without having to compute the
linearizations. The computation comprises of two steps. The
first step, which we call, normalization, modifies A and B
so that each feature will have the same set of parents in both
CP-nets. This means that each feature will have in both nor-
malized CP-nets a CP-table with exactly the same number of
rows corresponding each to the same assignment to its par-
ents. The second step, broadly speaking, computes the con-
tribution to the distance of each difference in the CP-table
entries. We describe each step in turn.

Step 1: Normalization. Consider two CP-nets, A and B
over m variables V = {X1, . . . , Xm} each with binary do-
mains. We assume the two CP-nets are O-legal with respect
to a total order O = X1 < X2 < · · · < Xm−1 < Xm. We
note that O-legality implies that the Xi can only depend on
a subset of {X1, . . . , Xi−1}

Each variable Xi has a set of parents PaA(Xi) (resp.
PaB(Xi)) in A (resp. in B), and is annotated with a condi-
tional preference table in each CP-net, denoted CPTA(Xi)
and CPTB(Xi).

We note that, in general we will have that PaA(Xi) 6=
PaB(Xi). However, it is easy to extend the two CP-nets so
that in both Xi will have the same set of parents PaA(Xi)∪
PaB(Xi). This is done by adding redundant information to
the CP-tables, which does not alter the induced ordering.

For example, let us considerCPTA(Xi), then we will add
2PaA(Xi)∪PaB(Xi)−2PaA(Xi) copies of each original row to
CPTA(Xi), that is, one for each assignment to the variables
on which Xi depends in B but not in A. After this process is
applied to all the features in both CP-nets, each feature will
have the same parents in both CP-nets and its CP-tables will
have the same number of rows in both CP-nets. We denote
with A′ and B′ the resulting CP-nets.

We note that normalization can be seen as the reverse pro-
cess of CP-net reduction (Apt, Rossi, and Venable 2008)
which eliminates redundant dependencies in a CP-net.

Step 2: Distance calculation Given two normalized CP-
nets A and B, let diff(A,B) represent the set of CP-table
entries of B which are different in A and let var(i) = j if
CP-table entry i refers to variable Xj . Moreover, let m =



|V | and flw(X) denote the number of features following X
in order O. Let us define the two following quantities:

nSwap(A,B) =
∑

j∈diff(A,B)

2flw(var(j))+(m−1)−|PaB(var(j))|

(3)

which counts the number of inversions that are caused by
each different table entry and sums them up.

Theorem 2. Given two normalized CP-nets A and B, we
have:

CPD(A,B) = nSwap(A,B) (4)

We provide an example that gives an intuition of how a
difference in a CP-table entry affects the LexO lineariza-
tion.

Example 0.1. Consider a CP-net with three binary features,
A, B, and C, with domains containing f and f if F is
the name of the feature, and with the cp-statements as fol-
lows: a � a, b � b, c � c. A linearization of the partial
order induced by this CP-net can be obtained by impos-
ing an order over the variables, say Let variable ordering
O = A � B � C. The LexO(A) is as follows:

A1Zone︷ ︸︸ ︷
B1Zone︷ ︸︸ ︷
abc � abc �

B2Zone︷ ︸︸ ︷
abc � abc �

A2zone︷ ︸︸ ︷
B3zone︷ ︸︸ ︷

abc � abc �

B4zone︷ ︸︸ ︷
abc � abc

Now, consider changing only the cp-statement regarding
A to a � a. Then, the linearization of this new CP-net can
be obtained by the previous one by swapping the first out-
come in the A1zone with the first outcome in the A2zone,
the second outcome in the A1zone with the second outcome
in the A2zone and so on. Moreover, the number of swaps
is directly dependent on the number of variables that come
after A in the total order.

From Theorem 2 we can see that 0 ≤ CPD(A,B) ≤
2m−1(2m − 1), where m is the number of features. In par-
ticular:

• CPD(A,B) = 0 when the two CP-nets have the same
dependency graph and cp-tables and so they are repre-
senting the same preferences;

• CPD(A,B) = 2m−1(2m − 1) when the two CP-nets
have the same dependency graph but cp-tables with re-
versed entries, so they are representing preferences that
are opposite to each other.

Notice that variables with different cp-statements in the rep-
resentation give more value to the distance if they come first
in the total order: the value decreases as the position in the
total order increases. For instance it is easy to prove that if
the cp-statement of the first variable in the total order differs,
than CPD ≥ 2m−2(2m − 1).

Bounding the error of CPD
The reason for introducing CPD is to provide a distance
over CP-nets which can be computed directly from their
structures and which approximates their KTD.

To understand to what extent CPD can differ from
KTD, let us consider two O-legal CP-nets, A and B, with
induced partial orders P and Q, and two outcomes o and o′.
From Definitions 1 and 2 it follows that:

• If o and o′ are ordered in both P and Q then the pair will
contribute in the same way (either with 0, if they are or-
dered in the same way, or 1, if they are ordered in the
opposite way) to both KTD(A,B) and CPD(A,B).

• If o and o′ are incomparable in both P and Q then the
contribution of the pair toKTD(A,B) is 0, while its con-
tribution to CPD(A,B) can be either 0 or 1 depending if
the LexO linearization has linearized the pair in the same
or opposite way in the two induced orderings.

• If o and o′ are ordered in, say, P and incomparable in
Q then the contribution of this pair to KTD(A,B) is p
while its contribution to CPD(A,B) is either 0 or 1.

Summarizing, for each pair CPD can overestimate of at
most 1 and under-estimate of at most p only if the pair is
incomparable in at least one of the orderings. Thus, an ab-
solute upperbound to the error that CPD makes can be es-
timated by counting the maximum number of incomparable
pairs in an ordering induced by a CP-net. We will now com-
pute this number.

Let us consider a separable CP-net S, that is, a CP-net
over a set of m variables V with binary domains and no de-
pendencies between the variables. Let P be the partial order
induced by S over the set of outcomes U . A chain is a subset
U ′ ⊆ U such that for each (x, y) ∈ U ′×U ′, x > y or x < y.
We recall that the height of a partial order P , denoted h(P ),
is the number of elements in the longest chain. We call
incomp(P ) the set of all the incomparable pairs of out-
comes in P . In the following section we will call ob the best
outcome and ow the worst outcome in P .

We start by observing that the height of a partial order
induced by an acyclic CP-net corresponds to the length of
the longest path from the best outcome to the worst outcome.
This is a direct consequence of the fact that a CP-net induces
a lattice.

Proposition 2. The height h(P ) of a partial order P in-
duced by an acyclic CP-net coincides with the length of the
longest path from ob to ow.

We now observe that the number of incomparable pairs in
a partial order is connected to its height. In fact, Mirsky’s
theorem states that the height of a partial order equals the
cardinality of the minimum antichains partition that cover
the partial order (Mirsky 1971). This result can be extended
to partial orders induced by CP-nets.

Theorem 3. Given two partial orders P and Q induced
by two O-legal acyclic CP-nets defined over the same set
of variables V , if h(P ) > h(Q) then incomp(P ) <
incomp(Q).



Given Proposition 2 and Theorem 3 we can prove that
separable CP-nets are indeed inducing partial orders with
the maximal set of incomparables with respect to all other
O-legal CP-nets.
Theorem 4. A separable CP-net S induces a partial order
P where the number of incomparable pairs of outcomes is
maximal with respect of all the possible acyclic O-legal CP-
nets over the same set of variables.

We provide the intuition behind the proof. Let’s start by
computing the partial order induced by the CP-net, starting
from the best outcome ob. We can now build the next level
of outcomes by changing just one assignment for each vari-
able, let’s call var(oi,j) the subset of variables for which we
change the value in the j − th outcome of the i − th level
with respect to ob. We get a subset of outcomes that differ
for just one value from ob. In the induced partial order all
these outcomes are worst than ob by definition. The cardi-
nality of this subset is

(
n
1

)
. For each outcome we can now

compute the subset of outcomes of the next level by chang-
ing the assignment of just one variable except the ones in
var(oi,j). Each outcome in level i + 1 derived from oi,j is
worst than it. For each level i the number of outcomes is

(
n
i

)
.

In such a way there does not exist an outcome o′ in level i′
which is better than another outcome o′′ in level i′′, with
i′ > i′′. Roughly speaking, we have shown that level parti-
tioning is minimal and any other CP-net structure leads to an
increment of height of the induced partial order. But due to
Theorem 3, a completely separable CP-net has the maximal
number of incomparable pairs with respect to other CP-net
over the same features.

The reasoning above also allow us to compute such max-
imum number of incomparables.
Theorem 5. Then the total number of incomparable pairs
in any completely separable CP-net is:

m−1∑
i=1

(
m

i

)
·(1
2
(

(
m

i

)
−1)+

i∑
l=1

(
i

l

) m−1∑
j=l+1

(
m− 1

j

)
) (5)

In fact, starting from the best outcome we can flip the
value of a single variable to have a new outcome which is
directly comparable with the best outcome. This can be done(
m
i

)
times (with i = 1) to have all the possible outcomes that

are directly comparable with the best outcome in the induced
partial order. All the outcomes computed in such a way are
incomparable with respect to each other since the CP-net is
separable and since each outcome differs on two values from
any other outcome at the same level (let’s denote a level with
the value of index i). So the number of incomparable pairs is(
m
i

)
· ( 12 (

(
m
i

)
− 1). Iterating this computation by increasing

the index i we have the number of incomparable pairs for
each level. We now need to compute the number of incom-
parable pairs due to the transitive closure. At each level, the
index i also represents the number of variables with a differ-
ent values with respect to the best outcome, we call F ⊂ V
the subset of such variables. Let’s consider two outcomes o
at level i and o′ at level j, with j = i + 1. The two out-
comes are incomparable if at least one variable in F and at

least one more variables not in F have different values. The
proof is straightforward, if all the variables in F for o and
o′ have the same values, then a single variable is changing
from o to o′ that makes the two outcomes comparable. We
can choose

(
i
l

)
different combinations for the variables in F

and
(
m−1
j

)
of different combinations for variables not in F .

Iterating this process by increasing the index j allows us to
compute the number of outcomes which are incomparable
to o.
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Figure 1: Mean time on log scale.

The number of incomparable pairs can be used to bound
the error of CPD. It is easy to see that each non-fake arc
added to the dependency graph of a CP-net reverses at least
one arc in the induced partial order. This reduces of at least
1 the number of incomparable pairs, since we connect two
outcomes of the same level in the induced partial order.

Empirical analysis
To support theoretical results, we run a set of experiments
to have empirical evidence of the distance function’s sound-
ness. Firstly we generate CP-nets uniformly at random us-
ing the software described in (Allen et al. 2016). During this
phase we generate CP-nets over n variables with binary do-
mains (with 2 ≤ n ≤ 9) and for each n we generate 1000
CP-nets using the default software settings, which means
that for 2 ≤ n ≤ 6 the maximum number of parents is
n − 1, while for 7 ≤ n ≤ 9 the maximum number of par-
ents for a feature is 5. We use these generated CP-nets to
test different properties of the distance function. At the very
beginning we tested the processing time for the KT distance
function and we compared this processing time with CPD
(we use p = 0.5 in the experiment). We also built a simple
vector representation of a CP-net. In this vector representa-
tion, given two CP-nets A and B, where A is the referee,
we normalized the two CP-nets to have the same number of
cp-entries. Each cell of the vector representing A is equal to
1. Each i-th cell in the vector representing B is equal to 1
if the correspondent cp-entry in the two CP-nets are equal,



-1 otherwise. This vector representation is used to compute
a cosine similarity and the euclidean distance, allowing us
to compare CPDs performance with simple and well-known
distance functions often used as metrics for similarity.

Fig. 1 shows the average time used to compute KTD,
CPD, cosine similarity, and the euclidean distance. While
KTD grows very fast, the other mean times are very simi-
lar one each other. This suggests that simple distance func-
tions have good performance on this combinatorial domain.
Clearly for small values of n the running time for CPD
is higher than that of KTD because we also take into ac-
count normalization processing time. However, the mean
time for KTD increases and it is almost 4 orders of mag-
nitudes greater than the mean time of CPD, showing that
computing an approximation of KTD is desirable also from
a time point of view for values of n ≥ 3.
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Figure 2: Percentage of errors.

During the first experiment we also checked how many
times CPD, cosine similarity and the euclidean distance
are incorrect. This means that given a triple of CP-nets
(A,B,C) over the same set of variables we compute kt1 =
KTD(A,B), kt2 = KTD(A,C), l1 = CPD(A,B)
and l2 = CPD(A,C) (respectively the cosine similarity
and the euclidean distance) and we count how many times
kt1 >= kt2 but l1 < l2 or vice-versa. In other words we
count how many times a CP-net B is closer to a CP-net A
with respect to a third CP-net C according to KTD, but
CPD, the cosine similarity and the euclidean distance state
the opposite.

The number of errors made by the approximation met-
ric, CPD, is shown up in Fig. 2. While the cosine similar-
ity and the euclidean distance seem to behave badly when
we increase the number of features, it is interesting to no-
tice that CPD is stable and the total error is less than
9%. This is interesting because with a high value of n the
number of incomparable pairs in the induced partial order
increases, these incomparable pairs are the reason for the
over-estimation and the under-estimation of the KDT value.
Hence, CPD shows good resilience to incomparable pairs
even when there are many such pairs.
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Figure 3: Mean percentage errors.

We take trace of the deviation of CPD with respect to the
real (KTD) distance between the two CP-nets. In particular
we compute the Mean Percentage Error (MPE) which is re-
ported in Fig. 3. The MPE is a scale invariant measure for
the error and gives an idea of how much the approximation
is far from the real value. In Figure 3 we see that after we
have n = 3 features, the error stays relatively constant.

Conclusions
In this paper we proposed a first step towards a useful no-
tion of distance between CP-nets. This is for the best of our
knowledge the first attempt to compute efficiently a distance
between CP-nets. We give a theoretical study of this new ap-
proach and an experimental evaluation of the distance, that
show it is both accurate and efficient to compute. Many ex-
tensions to our setting can be considered for the future. First,
the CP-nets over which we define the CPD distance have the
same features with the same domains but can differ in their
dependency structure and CP-table. However, it would be
useful to also consider CP-nets with different features and
domains. Moreover, we consider CP-nets which are O-legal,
that is, there is a total order of the CP-nets features that is
compatible with the dependency links of both CP-nets. Re-
laxing this assumption is an important step for future work.
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